Previous |  Up |  Next

Article

References:
[1] P.L. García: The Poincaré-Cartan invariant in the calculus of variations. Symp. Math. XIV (1974), 219–246. MR 0406246
[2] P.L. García and J. Muñoz: On the geometrical structure of higher order variational calculus. Proceedings of the IUTAM-ISIMM. Symposium on Modern Developments in Analytical Mechanics (Bologna), Tecnoprint, 1983, pp. 127–147. MR 0773483
[3] H. Goldschmidt and S. Sternberg: The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier (Grenoble) 23 (1973), 203–267. DOI 10.5802/aif.451 | MR 0341531
[4] M. Gotay: An exterior differential system approach to the Cartan form. Géométrie Symplectique et Physique Mathématique (Boston), P. Donato et al., Boston, 1991, pp. 160–188. MR 1156539
[5] H. Hess: Symplectic connections in geometric quantization and factor orderings. Ph.D. thesis, Berlin, 1981, pp. .
[6] M. Horác and I. Kolá: On the higher order Poincaré-Cartan forms. Czechoslovak Math. J. 33 (1983), 467–475. MR 0718929
[7] I. Kolá: A geometric version of the higher order Hamilton formalism in fibered manifolds. J. Geom. Phys. 1 (1984), 127–137. DOI 10.1016/0393-0440(84)90007-X | MR 0794983
[8] I. Kolá, P. Michor and J. Slovak: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993, pp. . MR 1202431
[9] D. Krupka: A geometric theory of ordinary first order variational problems in fibered manifolds I. Critical sections. J. Math. Anal. Appl. 49 (1975), 180–206. DOI 10.1016/0022-247X(75)90169-9 | MR 0362397 | Zbl 0312.58002
[10] A. Kumpera: Invariants différentiels d’un pseudogroupe de Lie, I. J. Differential Geom. 10 (1975), 289–345. MR 0407911 | Zbl 0319.58018
[11] B. Kupershmidt: Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism. Lect. Notes in Math. 775, 1980, pp. 162–217. MR 0569303
[12] J. Muñoz: Poincaré-Cartan forms in higher order variational calculus on fibred manifolds. Rev. Mat. Iberoamericana 1 (1985), no. 4, 85–126. DOI 10.4171/RMI/20 | MR 0850411
[13] P.J. Olver: Equivalence and the Cartan form. Acta Appl. Math. 31 (1993), 99–136. DOI 10.1007/BF00990539 | MR 1223167 | Zbl 0794.49041
[14] J. Rodríguez: Sobre los espacios de jets y los fundamentos de la teoría de los sistemas de ecuaciones en derivadas parciales. Ph.D. thesis, Salamanca, 1990.
[15] C. Ruiz: Prolongament formel des systemes differentiels exterieurs d’ordre superieur. C. R. Acad. Sci. Paris Sér. I Math. 285 (1977), 1077–1080. MR 0515877
[16] D. Saunders: An alternative approach to the Cartan form in Lagrangian field theories. J. Phys. A 20 (1987), 339–349. DOI 10.1088/0305-4470/20/2/019 | MR 0874255 | Zbl 0652.58002
[17] D. Saunders: The Geometry of Jet Bundles. Lecture Notes Series, vol. 142, London Mathematical Society, Cambridge University Press, New York, 1989, pp. . MR 0989588 | Zbl 0665.58002
[18] J.P. Schneiders: An introduction to the D-Modules. Bull. Soc. Roy. Sci. Liège 63 (1994), 223–295. MR 1282516
[19] W.M. Tulczyjew: The Euler-Lagrange resolution. Lect. Notes in Math. 836, 1980, pp. 22–48. MR 0607685 | Zbl 0456.58012
[20] A. Weil: Théorie des points proches sur les variétés différentiables. Colloque de Géometrie Différentielle, C.N.R.S. (1953), 111–117. MR 0061455 | Zbl 0053.24903
Partner of
EuDML logo