Previous |  Up |  Next

Article

Title: $\Cal D$-modules, contact valued calculus and Poincaré-Cartan form (English)
Author: Blanco, Ricardo J. Alonso
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 3
Year: 1999
Pages: 585-606
.
Category: math
.
MSC: 58A20
MSC: 58E30
MSC: 58J10
idZBL: Zbl 1011.58011
idMR: MR1708350
.
Date available: 2009-09-24T10:25:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127512
.
Reference: [1] P.L. García: The Poincaré-Cartan invariant in the calculus of variations.Symp. Math. XIV (1974), 219–246. MR 0406246
Reference: [2] P.L. García and J. Muñoz: On the geometrical structure of higher order variational calculus.Proceedings of the IUTAM-ISIMM. Symposium on Modern Developments in Analytical Mechanics (Bologna), Tecnoprint, 1983, pp. 127–147. MR 0773483
Reference: [3] H. Goldschmidt and S. Sternberg: The Hamilton-Cartan formalism in the calculus of variations.Ann. Inst. Fourier (Grenoble) 23 (1973), 203–267. MR 0341531, 10.5802/aif.451
Reference: [4] M. Gotay: An exterior differential system approach to the Cartan form.Géométrie Symplectique et Physique Mathématique (Boston), P. Donato et al., Boston, 1991, pp. 160–188. MR 1156539
Reference: [5] H. Hess: Symplectic connections in geometric quantization and factor orderings.Ph.D. thesis, Berlin, 1981, pp. .
Reference: [6] M. Horác and I. Kolá: On the higher order Poincaré-Cartan forms.Czechoslovak Math. J. 33 (1983), 467–475. MR 0718929
Reference: [7] I. Kolá: A geometric version of the higher order Hamilton formalism in fibered manifolds.J. Geom. Phys. 1 (1984), 127–137. MR 0794983, 10.1016/0393-0440(84)90007-X
Reference: [8] I. Kolá, P. Michor and J. Slovak: Natural Operations in Differential Geometry.Springer-Verlag, Berlin, 1993, pp. . MR 1202431
Reference: [9] D. Krupka: A geometric theory of ordinary first order variational problems in fibered manifolds I. Critical sections.J. Math. Anal. Appl. 49 (1975), 180–206. Zbl 0312.58002, MR 0362397, 10.1016/0022-247X(75)90169-9
Reference: [10] A. Kumpera: Invariants différentiels d’un pseudogroupe de Lie, I.J. Differential Geom. 10 (1975), 289–345. Zbl 0319.58018, MR 0407911, 10.4310/jdg/1214432795
Reference: [11] B. Kupershmidt: Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism.Lect. Notes in Math. 775, 1980, pp. 162–217. MR 0569303
Reference: [12] J. Muñoz: Poincaré-Cartan forms in higher order variational calculus on fibred manifolds.Rev. Mat. Iberoamericana 1 (1985), no. 4, 85–126. MR 0850411, 10.4171/RMI/20
Reference: [13] P.J. Olver: Equivalence and the Cartan form.Acta Appl. Math. 31 (1993), 99–136. Zbl 0794.49041, MR 1223167, 10.1007/BF00990539
Reference: [14] J. Rodríguez: Sobre los espacios de jets y los fundamentos de la teoría de los sistemas de ecuaciones en derivadas parciales.Ph.D. thesis, Salamanca, 1990.
Reference: [15] C. Ruiz: Prolongament formel des systemes differentiels exterieurs d’ordre superieur.C. R. Acad. Sci. Paris Sér. I Math. 285 (1977), 1077–1080. MR 0515877
Reference: [16] D. Saunders: An alternative approach to the Cartan form in Lagrangian field theories.J. Phys. A 20 (1987), 339–349. Zbl 0652.58002, MR 0874255, 10.1088/0305-4470/20/2/019
Reference: [17] D. Saunders: The Geometry of Jet Bundles.Lecture Notes Series, vol. 142, London Mathematical Society, Cambridge University Press, New York, 1989, pp. . Zbl 0665.58002, MR 0989588
Reference: [18] J.P. Schneiders: An introduction to the D-Modules.Bull. Soc. Roy. Sci. Liège 63 (1994), 223–295. MR 1282516
Reference: [19] W.M. Tulczyjew: The Euler-Lagrange resolution.Lect. Notes in Math. 836, 1980, pp. 22–48. Zbl 0456.58012, MR 0607685
Reference: [20] A. Weil: Théorie des points proches sur les variétés différentiables.Colloque de Géometrie Différentielle, C.N.R.S. (1953), 111–117. Zbl 0053.24903, MR 0061455
.

Files

Files Size Format View
CzechMathJ_49-1999-3_11.pdf 478.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo