Previous |  Up |  Next

Article

Title: Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration (English)
Author: Leopold, Hans-Gerd
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 3
Year: 1999
Pages: 633-644
Summary lang: English
.
Category: math
.
Summary: The paper deals with embeddings of function spaces of variable order of differentiation in function spaces of variable order of integration. Here the function spaces of variable order of differentiation are defined by means of pseudodifferential operators. (English)
Keyword: function spaces embedding theorems
Keyword: embedding theorems
MSC: 35S05
MSC: 46E35
idZBL: Zbl 1008.46015
idMR: MR1708338
.
Date available: 2009-09-24T10:26:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127515
.
Reference: [ER] Edmunds, D. E. and Rákosník, J.: Density of smooth functions in $W^{k,p(x)}$.Proc. R. Soc. Lond. A 437 (1992), 229–236. MR 1177754, 10.1098/rspa.1992.0059
Reference: [Il] Illner R.: A class of $L^p$-bounded pseudodifferential operators.Proc. Amer. Mat. Soc. 51 (1975), 347–355. Zbl 0279.47017, MR 0383153
Reference: [JL] Jacob, N. and Leopold, H.-G.: Pseudodifferential operators with variable order of differentiation generating Feller semigroups.Integral Equations and Operator Theory 17 (1994), 151–166. MR 1243995
Reference: [KN] Kikuchi, K. and Negoro, A.: Pseudodifferential operators and Sobolev spaces of variable order of differentiation.Rep. Fac. Liberal Arts, Shizuoka University, Sciences, 31 (1995), 19–27.
Reference: [KR] Kováčik, O. and Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czechoslovak Math. J. 41 (1991), 592–618. MR 1134951
Reference: [Kg] Kumano-go, H.: Pseudo-Differential Operators.Massachusetts Institute of Technology Press, Cambridge (Massachusetts)-London, 1981.
Reference: [Le1] Leopold, H.-G.: On Besov spaces of variable order of differentiation.Z. Anal. Anw. 8 (1989), 69–82. Zbl 0687.46019, MR 0997292, 10.4171/ZAA/337
Reference: [Le2] Leopold, H.-G.: On function spaces of variable order of differentiation.Forum Math. 3 (1991), 1–21. Zbl 0737.46020, MR 1085592, 10.1515/form.1991.3.1
Reference: [Ne] Negoro, A.: Stable-like processes; construction of the transition density and the behavior of sample paths near $t=0$.Osaka J. Math. 31 (1994), 189–214. Zbl 0804.60074, MR 1262797
Reference: [Sa] Samko, S. G.: Differentiation and integration of variable order and the spaces $L^{p(x)}$.Preprint, 1996. MR 1486602
Reference: [Sh] Sharapudinov, I. I.: On a topology of the space $L^{p(t)}([0,1])$.Matem. Zametki 26 (1979), 613–632. MR 0552723
Reference: [Ta] Taylor, M. E.: Pseudodifferential Operators.Princeton University Press, Princeton (New Jersey), 1981. Zbl 0453.47026, MR 0618463
Reference: [Tr] Triebel, H.: Theory of Function Spaces.Birkhäuser, Basel, 1983. Zbl 0546.46028, MR 0781540
Reference: [Ts] Tsenov, I. V.: A generalization of the problem of the best approximation in the space $L^s$.Uchen. Zap. Daghestan Gos. Univ 7 (1961), 25–37.
.

Files

Files Size Format View
CzechMathJ_49-1999-3_14.pdf 370.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo