Previous |  Up |  Next

Article

Summary:
Every separable Banach space with $C^{(n)}$-smooth norm (Lipschitz bump function) admits an equivalent norm (a Lipschitz bump function) which is both uniformly Gâteaux smooth and $C^{(n)}$-smooth. If a Banach space admits a uniformly Gâteaux smooth bump function, then it admits an equivalent uniformly Gâteaux smooth norm.
References:
[BF] J.M. Borwein, M. Fabian: On convex functions having points of Gâteaux differentiability which are not points of Fréchet differentiability. Canadian J. Math. 45 (1993), 1121–1134. DOI 10.4153/CJM-1993-062-8 | MR 1247537
[C] H. Cartan: Calcul différentiel formes différentielles. Herman, Paris 1967. MR 0223194
[DGZ] R. Deville, G. Godefroy, V. Zizler: Smoothness and renormings in Banach spaces. Pitman Monographs, No. 64, Longman House, Harlow, 1993. MR 1211634
[FWZ] M. Fabian, J.H.M. Whitfield, V. Zizler: Norms with locally Lipschitzian derivatives. Israel J. Math. 44 (1983), 262–276. DOI 10.1007/BF02760975 | MR 0693663
[MV] D.P. McLaughlin, J.D. Vanderwerff: Higher oreder Gâteaux smooth bump functions on Banach spaces. Bull. Australian Math. Soc. 51 (1995), 291–300. DOI 10.1017/S000497270001412X | MR 1322795
[P] R.R. Phelps: Convex functions, monotone operators and differentiability. Lecture Notes in Math. No. 1364, Springer Verlag, 1993. MR 1238715 | Zbl 0921.46039
[T] W.K. Tang: Uniformly differentiable bump functions. Preprint. MR 1421846 | Zbl 0876.46007
Partner of
EuDML logo