Previous |  Up |  Next

Article

Title: Completely generalized nonlinear variational inclusions for fuzzy mappings (English)
Author: Huang, Nan-jing
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 4
Year: 1999
Pages: 767-777
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce and study a new class of completely generalized nonlinear variational inclusions for fuzzy mappings and construct some new iterative algorithms. We prove the existence of solutions for this kind of completely generalized nonlinear variational inclusions and the convergence of iterative sequences generated by the algorithms. (English)
Keyword: variational inclusion
Keyword: fuzzy mapping
Keyword: algorithm
Keyword: existence
Keyword: convergence
MSC: 47H04
MSC: 47J20
MSC: 47S40
MSC: 49J40
MSC: 90C48
MSC: 90C70
idZBL: Zbl 1008.47069
idMR: MR1746702
.
Date available: 2009-09-24T10:27:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127526
.
Reference: [s1] C. Baiocchi and A. Capelo: Variational and Quasivariational Inequalities, Application to Free Boundary Problems.Wiley, New York, 1984. MR 0745619
Reference: [s2] A. Bensoussan: Stochastic Control by Functional Analysis Method.North-Holland, Amsterdam, 1982. MR 0652685
Reference: [s3] A. Bensoussan, M. Goursat and J. L. Lions: Control impulsinnel et inequations quasivariationalles stationaries.C. R. Acad. Sci. 276 (1973), 1279–1284. MR 0317143
Reference: [s4] A. Bensoussan and J. L. Lions: Impulse Control and Quasivariational Inequalities.Gauthiers-Villers, Bordas, Paris, 1984. MR 0756234
Reference: [s5] Shih-sen Chang: Variational Inequalities and Complementarity Problems, Theory with Applications.Shanghai Scientific and Tech. Literature Publishing House, Shanghai, 1991.
Reference: [6] Shih-sen Chang: Coincidence theorems and variational inequalities for fuzzy mappings.Fuzzy sets and Systems 61 (1994), 359–368. MR 1273257
Reference: [s7] Shih-sen Chang and Nan-jing Huang: Generalized strongly nonlinear quasi-complementarity problems in Hilbert spaces.J. Math. Anal. Appl 158 (1991), 194–202. MR 1113409, 10.1016/0022-247X(91)90276-6
Reference: [s8] Shih-sen Chang and Nan-jing Huang: Generalized multivalued implicit complementarity problems in Hilbert spaces.Math. Japonica 36 (1991), 1093–1100. MR 1139726
Reference: [9] Shih-sen Chang and Nan-jing Huang: Generalized complementarity problems for fuzzy mappings.Fuzzy sets and Systems 55 (1993), 227–234. MR 1215143
Reference: [s10] Shih-sen Chang and Nan-jing Huang: Generalized quasi-complementarity problems for a pair of fuzzy mappings.J. Fuzzy Math. 4 (1996), 343–354. MR 1395979
Reference: [11] Shih-sen Chang and Yuanguo Zhu: On variational inequalities for fuzzy mappings.Fuzzy sets and Systems 32 (1989), 359–367. MR 1018726
Reference: [s12] P. Hartman and G. Stampacchia: On some nonlinear elliptic differential functional equations.Acta. Math. 115 (1966), 271–310. MR 0206537, 10.1007/BF02392210
Reference: [s13] A. Hassouni and A. Moudafi: A perturbed algorithm for variational inclusions.J. Math. Anal. Appl 185 (1994), 706–712. MR 1288236, 10.1006/jmaa.1994.1277
Reference: [14] Nan-jing Huang: Generalized nonlinear variational inclusions with noncompact valued mappings.Appl. Math. Lett. 9:3 (1996), 25–29. MR 1385994, 10.1016/0893-9659(96)00026-2
Reference: [15] Nan-jing Huang: A new method for a class of nonlinear variational inequalities with fuzzy mappings.Appl. Math. Lett. 10:6 (1997), 129–133. MR 1488281, 10.1016/S0893-9659(97)00116-X
Reference: [16] Nan-jing Huang: Completely generalized strongly nonlinear quasi-complementarity problems for fuzzy mappings.Indian J. Pure Appl. Math. 28 (1997), 23–32. MR 1442814
Reference: [s17] Nan-jing Huang and Xin-qi Hu: Generalized multi-valued nonlinear quasi-complementarity problems in Hilbert spaces.J. Sichuan Univ 31 (1994), 306–310. MR 1322043
Reference: [s18] G. Isac: A special variational inequality and the implicit complementarity problem.J. Fac. Sci. Univ. Tokyo 37 (1990), 109–127. Zbl 0702.49008, MR 1049022
Reference: [19] B. S. Lee, G. M. Lee, S. J. Cho and D. S. Kim: A variational inequality for fuzzy mappings.Proc. of Fifth Internat. Fuzzy Systems Association World Congress 1993, Seoul, pp. 326–329.
Reference: [20] G. M. Lee, D. S. Kim, B. S. Lee and S. J. Cho: Generalized vector variational inequality and fuzzy extension.Appl. Math. Lett. 6 (1993), 47–51. MR 1348465, 10.1016/0893-9659(93)90077-Z
Reference: [s21] U. Mosco: Implicit Variational Problems and Quasi-variational Inequalities.Lecture Notes in Mathematics, Vol 543, Springer-Verlag, Berlin, 1976, pp. 83–156. Zbl 0346.49003, MR 0513202
Reference: [s22] Jr. S. B. Nadler: Multi-valued contraction mappings.Pacific J. Math 30 (1969), 475–488. Zbl 0187.45002, MR 0254828, 10.2140/pjm.1969.30.475
Reference: [s23] M. A. Noor: Strongly nonlinear variational inequalities.C. R. Math. Rep. Acad. Sci. Canada 4 (1982), 213–218. Zbl 0502.49008, MR 0667575
Reference: [s24] M. A. Noor: On the nonlinear complementarity problem.J. Math. Anal. Appl. 123 (1987), 455–460. Zbl 0624.41041, MR 0883701, 10.1016/0022-247X(87)90323-4
Reference: [s25] M. A. Noor: Quasivariational inequalities.Appl. Math. Lett. 1 (1988), 367–370. MR 0975809, 10.1016/0893-9659(88)90152-8
Reference: [26] M. A. Noor: Variational inequalities for fuzzy mappings (I).Fuzzy Sets and Systems 55 (1993), 309–312. Zbl 0785.49006, MR 1223868
Reference: [27] M. A. Noor, K. I. Noor and T. M. Rossias: Some aspects of variational inequalities.J. Comput. Appl. Math. 47 (1993), 285–312. MR 1251844, 10.1016/0377-0427(93)90058-J
Reference: [s28] A. H. Siddiqi and Q. H. Ansari: Strongly nonlinear quasivariational inequalities.J. Math. Anal. Appl. 149 (1990), 444–450. MR 1057686, 10.1016/0022-247X(90)90054-J
Reference: [s29] A. H. Siddiqi and Q. H. Ansari: General strongly nonlinear variational inequalities.J. Math. Anal. Appl. 166 (1992), 386–392. MR 1160934, 10.1016/0022-247X(92)90305-W
Reference: [s30] Lu-chuan Zeng: Completely generalized strongly nonlinear quasicomplementarity problems in Hilbert spaces.J. Math. Anal. Appl. 193 (1995), 706–714. MR 1338731, 10.1006/jmaa.1995.1262
.

Files

Files Size Format View
CzechMathJ_49-1999-4_8.pdf 324.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo