Previous |  Up |  Next

Article

Title: A new class of nonexpansive type mappings and fixed points (English)
Author: Ćirić, Ljubomir B.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 4
Year: 1999
Pages: 891-899
Summary lang: English
.
Category: math
.
Summary: In this paper a new class of self-mappings on metric spaces, which satisfy the nonexpensive type condition (3) below is introduced and investigated. The main result is that such mappings have a unique fixed point. Also, a remetrization theorem, which is converse to Banach contraction principle is given. (English)
Keyword: nonexpansive type mapping
Keyword: asymptotically regular mapping
Keyword: fixed point.
MSC: 47H09
MSC: 47H10
MSC: 54H25
idZBL: Zbl 1003.54024
idMR: MR1746714
.
Date available: 2009-09-24T10:28:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127538
.
Reference: [1] J. Bogin: A generalization of a fixed point theorem of Goebel, Kirk and Shimi.Canad. Math. Bull 19 (1976), 7–12. Zbl 0329.47021, MR 0417866, 10.4153/CMB-1976-002-7
Reference: [2] S.K. Chatterjea: Applications of an extension of a theorem of Fisher on common fixed point.Pure Math. Manuscript 6 (1987), 35–38. Zbl 0664.54029, MR 0981322
Reference: [3] Lj. B. Ćirić: On a common fixed point theorem of a Greguš type.Publ. Inst. Math. (Beograd) (N.S.) 49 (63) (1991), 174–178. MR 1127395
Reference: [4] Lj. B. Ćirić: On some discontinuous fixed point mappings in convex metric spaces.Czechoslovak Math. J. 43 (118) (1993), 319–326. MR 1211753
Reference: [5] Lj. B. Ćirić: On Diviccaro, Fisher and Sessa open questions.Arch. Math. (Brno) 29 (1993), 145–152. MR 1263115
Reference: [6] Lj. B. Ćirić: Nonexpansive type mappings and fixed point theorems in convex metric spaces.Rend. Accad. Naz. Sci. XL Mem. Mat. (5), Vol. XIX (1995), 263–271.
Reference: [7] Lj. B. Ćirić: On some nonexpansive type mappings and fixed points.Indian J. Pure Appl. Math. 24 (3) (1993), 145–149. MR 1210385
Reference: [8] Lj. B. Ćirić: On same mappings in metric space and fixed points.Acad. Roy. Belg. Bull. Cl. Sci. (5) T.VI (1995), 81–89. MR 1385507
Reference: [9] D. Delbosco, O. Ferrero and F. Rossati: Teoremi di punto fisso per applicazioni negli spazi di Banach.Boll. Un. Mat. Ital. A. (6) 2 (1993), 297–303. MR 0724481
Reference: [10] M. L. Diviccaro, B. Fisher and S. Sessa: A common fixed point theorem of Greguš type.Publ. Math. (Debrecen) 34 (1987), 83–89. MR 0901008
Reference: [11] Sh. T. Dzhabbarov: A generalized contraction mapping principle and infinite systems of differential equations.Differentsialnye Uravneniya 26 (1990), no. 8, 1299–1309, 1467 (in Russian). MR 1074257
Reference: [12] B. Fisher: Common fixed points on a Banach space.Chung Yuan J. 11 (1982), 19–26.
Reference: [13] B. Fisher and S. Sessa: On a fixed point theorem of Greguš.Internat. J. Math. Sci. 9 (1986), 23–28. MR 0837098, 10.1155/S0161171286000030
Reference: [14] M. Greguš: A fixed point theorem in Banach spaces.Boll. Un. Mat. Ital. A (5) 17 (1980), 193–198.
Reference: [15] K. Iseki: On common fixed point theorems of mappings.Proc. Japan Acad. Ser. A Math. Sci. 50 (1974), 408–409. Zbl 0312.54045, MR 0440524
Reference: [16] G. Jungck: On a fixed point theorem of Fisher and Sessa.Internat. J. Math. Sci. 13 (1990), 497–500. Zbl 0705.54034, MR 1068012, 10.1155/S0161171290000710
Reference: [17] B. Y. Li: Fixed point theorems of nonexpansive mappings in convex metric spaces.Appl. Math. Mech. (English Ed.) 10 (1989), 183–188. 10.1007/BF02014826
Reference: [18] P. R. Meyers: A converse to Banach’s contraction theorem.J. Res. Nat. Bur. Standards, Sect. B 71 (1967), 73–76. Zbl 0161.19803, MR 0221469
Reference: [19] R. N. Mukherjee and V. Verma: A note on a fixed point theorem of Greguš.Math. Japon. 33 (1988), 745–749. MR 0972387
Reference: [20] P. Omari, G. Villari and F. Zanolin: A survey of recent applications of fixed point theory to periodic solutions of the Lienard equations, Fixed point theory and its applications.(Berkley, CA 1986), 171–178, Contemp. Math. 72, Amer. Math. Soc., Providence, RI, 1988. MR 0956489
Reference: [21] B. E. Rhoades: A generalization of a fixed point theorem of Bogin.Math. Sem. Notes, Kobe Univ. 6 (1978), 1–7. Zbl 0387.47040, MR 0500749
Reference: [22] B. E. Rhoades: Some applications of contractive type mappings.Math. Sem. Notes, Kobe Univ. 5 (1977), 137–139. Zbl 0362.54044, MR 0467716
Reference: [23] Md. Shahabuddin: Study of applications of Banach’s fixed point theorem.Chittagong Univ. Stud., Part II Sci. 11 (1987), 85–91. MR 0981206
Reference: [24] A. Weiczorek: Applications of fixed point theorems in game theory and mathematical economics (Polish).Wiadom. Mat. 28 (1988), 25–34. MR 0986059
.

Files

Files Size Format View
CzechMathJ_49-1999-4_20.pdf 290.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo