Previous |  Up |  Next

Article

Title: A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$ (English)
Author: Vatansever, Bilal
Author: Gill, David M.
Author: Eren, Nuran
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 1
Year: 2000
Pages: 67-74
Summary lang: English
.
Category: math
.
Summary: $G(3,m,n)$ is the group presented by $\langle a,b\mid a^5=(ab)^2=b^{m+3}a^{-n}b^ma^{-n}=1\rangle $. In this paper, we study the structure of $G(3,m,n)$. We also give a new efficient presentation for the Projective Special Linear group $PSL(2,5)$ and in particular we prove that $PSL(2,5)$ is isomorphic to $G(3,m,n)$ under certain conditions. (English)
MSC: 20D06
MSC: 20F05
idZBL: Zbl 1038.20021
idMR: MR1745460
.
Date available: 2009-09-24T10:30:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127549
.
Reference: [1] F.R. Beyl and J. Tappe: Group Extensions.Presentations and the Schur Multiplicator. Lecture Notes in Mathematics 958, Springer-Verlag, Berlin, 1982. MR 0681287
Reference: [2] C. M. Campbell and E. F. Robertson: A deficiency zero presentation for ${\mathrm SL}(2,p)$.Bull. London Math. Soc. 12 (1980), 17–20. MR 0565476, 10.1112/blms/12.1.17
Reference: [3] J. J. Cannon: An introduction to the group language CAYLEY.Proc. Durham Symposium on Computational Group Theory, Academic Press, London, 1984, pp. 145–183. MR 0760656
Reference: [4] H. S. Coxeter: The binary polyhedral groups and other generalizations of the quaternion group.Duke Math. J. 7 (1940), 367–379. Zbl 0024.15002, MR 0003409
Reference: [5] B. Huppert: Endliche Gruppen I.Springer, Berlin, 1967. Zbl 0217.07201, MR 0224703
Reference: [6] G. Karpilovsky: The Schur Multiplier.Oxford University Press, Oxford, 1987. Zbl 0619.20001, MR 1200015
Reference: [7] I. Schur: Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen.J. Reine Angew. Math. 132 (1907), 85–137.
Reference: [8] R. G. Swan: Minimal resolutions for finite groups.Topology 4 (1965), 193–208. Zbl 0146.04002, MR 0179234, 10.1016/0040-9383(65)90064-9
Reference: [9] B. Vatansever: Certain Classes of Group Presentations.Ph.D. thesis University of St. Andrews, 1992.
Reference: [10] B. Vatansever and E. F. Robertson: A new efficient presentation for $PSL(2,13)$ and the structure of the groups $G(7,m)$.Doga-Tr. J. of Mathematics 17 (1993), 148–154. MR 1226568
Reference: [11] B. Vatansever: A new efficient presentation for $PSL(2,37)$ and the structure of the groups $G(9,m)$.J. Inst. Math. Comput. Sci. Math. Ser. 7 (1994), 207–211. MR 1338491
Reference: [12] B. Vatansever: New efficient presentations for $PSL(2,5)$ and $ SL(2,5)$; the structure of the groups $G(5,m)$ and $G(m,n,r)$.Acta Math. Hungar. 71 (1996), 205–210. MR 1397552, 10.1007/BF00052109
Reference: [13] J. W. Wamsley: The Deficiency of Finite Groups.Ph.D. thesis University of Queensland, 1968.
Reference: [14] J. Wiegold: The Schur Multiplier.Groups (St. Andrews, 1981), C. M. Campbell and E. F. Robertson (eds.), LMS Lecture Notes, 71, Cambridge University Press, 1982, pp. 137–154. Zbl 0502.20003, MR 0679156
.

Files

Files Size Format View
CzechMathJ_50-2000-1_9.pdf 322.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo