Previous |  Up |  Next

Article

Title: A theorem for an axiomatic approach to metric properties of graphs (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 1
Year: 2000
Pages: 121-133
.
Category: math
.
MSC: 05C12
MSC: 05C38
MSC: 05C99
idZBL: Zbl 1033.05033
idMR: MR1745467
.
Date available: 2009-09-24T10:31:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127556
.
Reference: [1] H.-J. Bandelt, M. van de Vel and E. Verheul: Modular interval spaces.Math. Nachr. 163 (1993), 177–201. MR 1235066, 10.1002/mana.19931630117
Reference: [2] G. Chartrand and L. Lesniak: Graphs & Digraphs.Third edition. Chapman & Hall, London, 1996. MR 1408678
Reference: [3] H. M. Mulder: The Interval Function of a Graph.Mathematisch Centrum, Amsterdam, 1980. Zbl 0446.05039, MR 0605838
Reference: [4] L. Nebeský: A characterization of the set of all shortest paths in a connected graph.Math. Bohem. 119 (1994), 15–20. MR 1303548
Reference: [5] L. Nebeský: A characterization of the interval function of a connected graph.Czechoslovak Math. J. 44 (119) (1994), 173–178. MR 1257943
Reference: [6] L. Nebeský: Geodesics and steps in a connected graph.Czechoslovak Math. J. 47 (122) (1997), 149–161. MR 1435613, 10.1023/A:1022404624515
Reference: [7] L. Nebeský: An axiomatic approach to metric properties of connected graphs.Czechoslovak Math. J. 50(125) (2000), 3–14. MR 1745453, 10.1023/A:1022472700080
Reference: [8] L. Nebeský: A new proof of a characterization of the set of all geodesics in a connected graph.Czechoslovak Math. J. 48(123) (1998), 809–813. MR 1658202, 10.1023/A:1022404126392
.

Files

Files Size Format View
CzechMathJ_50-2000-1_16.pdf 307.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo