Previous |  Up |  Next

Article

Title: Remarks on Steinhaus’ property and ratio sets of sets of positive integers (English)
Author: Šalát, Tibor
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 1
Year: 2000
Pages: 175-183
Summary lang: English
.
Category: math
.
Summary: This paper is closely related to an earlier paper of the author and W. Narkiewicz (cf. [7]) and to some papers concerning ratio sets of positive integers (cf. [4], [5], [12], [13], [14]). The paper contains some new results completing results of the mentioned papers. Among other things a characterization of the Steinhaus property of sets of positive integers is given here by using the concept of ratio sets of positive integers. (English)
MSC: 11A41
MSC: 11B05
MSC: 11B83
MSC: 11K55
idZBL: Zbl 1034.11010
idMR: MR1745470
.
Date available: 2009-09-24T10:31:25Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127559
.
Reference: [1] T. M. Apostol: Introduction to Analytic Number Theory.Springer-Verlag, New York-Heidelberg-Berlin, 1976. Zbl 0335.10001, MR 0434929
Reference: [2] T. C. Brown, A. R. Freedman: Arithmetic progressions in lacunary sets.Rocky Mountain J. Math. 17 (1987), 587–596. MR 0908265, 10.1216/RMJ-1987-17-3-587
Reference: [3] T. C. Brown, A. R. Freedman: The uniform density of sets of integers and Fermat’s last theorem.C. R. Math. Rep. Acad. Sci. Canada XII (1990), 1–6. MR 1043085
Reference: [4] J. Bukor, M. Kmeťová, J. Tóth: Notes on ratio sets of sets of natural numbers.Acta Math. (Nitra) 2 (1995), 35–40.
Reference: [5] D. Hobby, D. M. Silberger: Quotients of primes.Amer. Math. Monthly 100 (1993), 50–52. MR 1197643, 10.2307/2324814
Reference: [6] J. Nagata: Modern General Topology.North-Holland Publ. Comp. Amsterdam-London-Groningen-New York, 1974. MR 0474164
Reference: [7] W. Narkiewicz, T. Šalát: A theorem of H. Steinhaus and $(R)$-dense sets of positive integers.Czechoslovak Math. J. 34(109) (1984), 355–361. MR 0761418
Reference: [8] H. H. Ostmann: Additive Zahlentheorie I.Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. Zbl 0072.03101, MR 0098721
Reference: [9] T. Šalát: Cantorsche Entwicklungen der reellen Zahlen und das Husdorffsche.Mass. Publ. Math. Inst. Hung. Acad. Sci. 6 (1961), 15–41. MR 0147465
Reference: [10] T. Šalát: On Hausdorff measure of linear sets (Russian).Czechoslovak Math. J. 11(86) (1961), 24–56. MR 0153802
Reference: [11] T. Šalát: Über die Cantorsche Reihen.Czechoslovak Math. J. 18(93) (1968), 25–56.
Reference: [12] T. Šalát: On ratio sets of sets of natural numbers.Acta Arith. 15 (1969), 273–278. MR 0242756, 10.4064/aa-15-3-273-278
Reference: [13] T. Šalát: Quotientbasen und $(R)$-dichte Mengen.Acta Arithm. 19 (1971), 63–78. Zbl 0218.10071, MR 0292788, 10.4064/aa-19-1-63-78
Reference: [14] P. Starni: Answers to two questions concerning quotients of primes.Amer. Math. Monthly 102 (1995), 347–349. Zbl 0828.11004, MR 1328019, 10.2307/2974957
Reference: [15] W. Sierpiński: Elementary Theory of Numbers.PWN, Warszawa, 1964. MR 0175840
.

Files

Files Size Format View
CzechMathJ_50-2000-1_19.pdf 335.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo