Previous |  Up |  Next

Article

Title: On some non-obvious connections between graphs and unary partial algebras (English)
Author: Pióro, Konrad
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 2
Year: 2000
Pages: 295-320
Summary lang: English
.
Category: math
.
Summary: In the present paper we generalize a few algebraic concepts to graphs. Applying this graph language we solve some problems on subalgebra lattices of unary partial algebras. In this paper three such problems are solved, other will be solved in papers [Pió I], [Pió II], [Pió III], [Pió IV]. More precisely, in the present paper first another proof of the following algebraic result from [Bar1] is given: for two unary partial algebras $\mathbf A$ and $\mathbf B$, their weak subalgebra lattices are isomorphic if and only if their graphs ${\mathbf G}^{\ast }({\mathbf A})$ and ${\mathbf G}^{\ast }({\mathbf B})$ are isomorphic. Secondly, it is shown that for two unary partial algebras $\mathbf A$ and $\mathbf B$ if their digraphs ${\mathbf G}({\mathbf A})$ and ${\mathbf G}({\mathbf B})$ are isomorphic, then their (weak, relative, strong) subalgebra lattices are also isomorphic. Thirdly, we characterize pairs $<{\mathbf L},{\mathbf A}>$, where $\mathbf A$ is a unary partial algebra and $\mathbf L$ is a lattice such that the weak subalgebra lattice of $\mathbf A$ is isomorphic to $\mathbf L$. (English)
MSC: 05C20
MSC: 05C60
MSC: 05C75
MSC: 05C99
MSC: 08A05
MSC: 08A55
MSC: 08A60
idZBL: Zbl 1046.08002
idMR: MR1761388
.
Date available: 2009-09-24T10:32:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127570
.
Reference: [Bar1] Bartol, W.: Weak subalgebra lattices.Comment. Math. Univ. Carolin. 31 (1990), 405–410. Zbl 0711.08007, MR 1078473
Reference: [Bar2] Bartol, W.: Weak subalgebra lattices of monounary partial algebras.Comment. Math. Univ. Carolin. 31 (1990), 411–414. Zbl 0711.08007, MR 1078474
Reference: [BRR] Bartol, W., Rosselló, F., Rudak, L.: Lectures on Algebras, Equations and Partiality.Rosselló F. (ed.), Technical report B-006, Univ. Illes Balears, Dept. Ciencies Mat. Inf., 1992.
Reference: [Ber] Berge, C.: Graphs and Hypergraphs.North-Holland, Amsterdam 1973. Zbl 0483.05029, MR 0357172
Reference: [BiFr] Birkhoff, G., Frink, O.: Representation of lattices by sets.Trans. Amer. Math. Soc. 64 (1948), 299–316. MR 0027263, 10.1090/S0002-9947-1948-0027263-2
Reference: [Bur] Burmeister, P.: A Model Theoretic Oriented Approach to Partial Algebras.Math. Research Band 32, Akademie Verlag, Berlin, 1986. Zbl 0598.08004, MR 0854861
Reference: [EvGa] Evans, T., Ganter, B.: Varieties with modular subalgebra lattices.Bull. Austral. Math. Soc. 28 (1983), 247–254. MR 0729011, 10.1017/S0004972700020918
Reference: [Grä1] Grätzer, G.: Universal Algebra, second edition.Springer-Verlag, New York 1979. MR 0538623
Reference: [Grä2] Grätzer, G.: General Lattice Theory.Akademie-Verlag, Berlin 1978. MR 0504338
Reference: [GP1] Grzeszczuk, P., Puczyłowski, E. R.: On Goldie and dual Goldie dimensions.Journal of Pure and Applied Algebra 31 (1984) 47–54). MR 0738204, 10.1016/0022-4049(84)90075-6
Reference: [GP2] Grzeszczuk, P., Puczyłowski, E. R.: On infinite Goldie dimension of modular lattices and modules.J. Pure Appl. Algebra 35 (1985), 151–155. MR 0775467, 10.1016/0022-4049(85)90037-4
Reference: [Jón] Jónsson, B.: Topics in Universal Algebra.Lecture Notes in Mathemathics 250, Springer-Verlag, 1972. MR 0345895
Reference: [MMT] McKenzie, R. N., McNulty, G. F., Taylor, W. F.: Algebras, Lattices, Varieties, vol. I.Wadsworth and Brooks/Cole Advanced Books and Software, Monterey, 1987. MR 0883644
Reference: [PióI] Pióro, K.: Uniqueness of a unary partial algebra graph characterization by the weak subalgebra lattice, part I.in preparation.
Reference: [PióII] Pióro, K.: Uniqueness of a unary partial algebra graph characterization by the weak subalgebra lattice, part II.in preparation.
Reference: [PióIII] Pióro, K.: Uniqueness of a unary partial algebra graph characterization by the weak subalgebra lattice, part III.in preparation.
Reference: [PióIV] Pióro, K.: Uniqueness of a unary partial algebra graph characterization by the weak subalgebra lattice, part IV.in preparation.
Reference: [Sach] Sachs, D.: The lattice of subalgebras of a Boolean algebra.Canad. J. Math. 14 (1962), 451–460. Zbl 0105.25204, MR 0137666, 10.4153/CJM-1962-035-1
Reference: [Sha1] Shapiro, J.: Finite equational bases for subalgebra distributive varieties.Algebra Universalis 24 (1987), 36–40. Zbl 0644.08003, MR 0921528, 10.1007/BF01188381
Reference: [Sha2] Shapiro, J.: Finite algebras with abelian properties.Algebra Universalis 25 (1988), 334–364. Zbl 0654.08001, MR 0969156, 10.1007/BF01229981
Reference: [Ore] Ore, O.: Theory of Graphs.AMS Colloq. Publ. vol. XXXVIII., 1962. Zbl 0105.35401, MR 0150753
Reference: [Tut] Tutte, W. T.: Graph Theory.Encyclopedia of Mathematics And Its Applications, Addison Wesley Publ. Co., 1984. Zbl 0554.05001, MR 0746795
Reference: [Wil] Wilson, R. J.: Introduction to Graph Theory, second edition.Longman Group Limited, London, 1979. MR 0539146
.

Files

Files Size Format View
CzechMathJ_50-2000-2_6.pdf 449.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo