Title:
|
Relative polars in ordered sets (English) |
Author:
|
Halaš, Radomír |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
50 |
Issue:
|
2 |
Year:
|
2000 |
Pages:
|
415-429 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the paper, the notion of relative polarity in ordered sets is introduced and the lattices of $R$-polars are studied. Connections between $R$-polars and prime ideals, especially in distributive sets, are found. (English) |
Keyword:
|
Ordered set |
Keyword:
|
distributive set |
Keyword:
|
ideal |
Keyword:
|
prime ideal |
Keyword:
|
$R$-polar |
Keyword:
|
annihilator |
MSC:
|
06A06 |
MSC:
|
06A99 |
idZBL:
|
Zbl 1047.06001 |
idMR:
|
MR1761398 |
. |
Date available:
|
2009-09-24T10:34:08Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127580 |
. |
Reference:
|
[1] Anderson, M., Feil, T.: Lattice-Ordered Groups (An Introduction).Dordrecht, Reidel, 1987. MR 0937703 |
Reference:
|
[2] Chajda, I.: Complemented ordered sets.Arch. Math. (Brno) 28 (1992), 25–34. Zbl 0785.06002, MR 1201863 |
Reference:
|
[3] Chajda, I., Halaš, R.: Indexed annihilators in ordered sets.Math. Slovaca 45 (1995), 501–508. MR 1390703 |
Reference:
|
[4] Chajda, I., Rachůnek, J.: Forbidden configurations for distributive and modular ordered sets.Order 5 (1989), 407–423. MR 1010389, 10.1007/BF00353659 |
Reference:
|
[5] Duffus, D., Rival, I.: A structure theory for ordered sets.Discrete Math. 35 (1981), 53–110. MR 0620665, 10.1016/0012-365X(81)90201-6 |
Reference:
|
[6] Erné, M.: Distributivgesetze und die Dedekindsche Schnittverwollständigung.Abh. Braunschweig. Wiss. Ges. 33 (1982), 117–145. MR 0693169 |
Reference:
|
[7] Grätzer, G.: Lattice Theory.Akademie Verlag, Berlin, 1978. MR 0504338 |
Reference:
|
[8] Halaš, R.: Pseudocomplemented ordered sets.Arch. Math. (Brno) 29 (1993), 153–160. MR 1263116 |
Reference:
|
[9] Halaš, R.: Characterization of distributive sets by generalized annihilators.Arch. Math. (Brno) 30 (1994), 25–27. MR 1282110 |
Reference:
|
[10] Halaš, R.: Decompositions of directed sets with zero.Math. Slovaca 45 (1995), 9–17. MR 1335835 |
Reference:
|
[11] Halaš, R.: Ideals and annihilators in ordered sets.Czechoslovak Math. J. 45(120) (1995), 127–134. MR 1314535 |
Reference:
|
[12] Halaš, R.: Some properties of Boolean ordered sets.Czechoslovak Math. J. 46(121) (1996), 93–98. MR 1371691 |
Reference:
|
[13] Halaš, R.: A characterization of finite Stone PC-ordered sets.Math. Bohem. 121 (1996), 117–120. MR 1400602 |
Reference:
|
[14] Halaš, R.: Annihilators and ideals in distributive and modular ordered sets.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 34 (1995), 31–37. MR 1447252 |
Reference:
|
[15] Halaš, R., Rachůnek, J.: Polars and prime ideals in ordered sets.Discuss. Math., Algebra and Stochastic Methods 15 (1995), 43–59. MR 1369627 |
Reference:
|
[16] Jakubík, J.: $M$-polars in lattices.Čas. Pěst. Mat. 95 (1970), 252–255. MR 0274352 |
Reference:
|
[17] Katriňák, T.: $M$-Polaren in halbgeordneten Mengen.Čas. Pěst. Mat. 95 (1970), 416–419. MR 0279004 |
Reference:
|
[18] Larmerová, J., Rachůnek, J.: Translations of modular and distributive ordered sets.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 27(91) (1988), 13–23. MR 1039879 |
Reference:
|
[19] Niederle, J.: Boolean and distributive ordered sets: Characterization and representation by sets (preprint).. MR 1354802 |
Reference:
|
[20] Rachůnek, J.: A characterization of $o$-distributive semilattices.Acta Sci. Math. (Szeged) 54 (1990), 241–246. MR 1096803 |
Reference:
|
[21] Rachůnek, J.: On $o$-modular and $o$-distributive semilattices.Math. Slovaca 42 (1992), 3–13. |
Reference:
|
[22] Rachůnek, J.: The ordinal variety of distributive ordered sets of width two.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 30(100) (1991), 17–32. MR 1166422 |
Reference:
|
[23] Rachůnek, J.: Non-modular and non-distributive ordered sets of lattices.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 32(110) (1993), 141–149. |
Reference:
|
[24] Šik, F.: A characterization of polarities the lattice of polars of which is Boolean.Czechoslovak Math. J. 91(106) (1981), 98–102. |
. |