Previous |  Up |  Next

Article

Title: Light paths with an odd number of vertices in polyhedral maps (English)
Author: Jendroľ, S.
Author: Voss, H. J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 3
Year: 2000
Pages: 555-564
Summary lang: English
.
Category: math
.
Summary: Let $P_k$ be a path on $k$ vertices. In an earlier paper we have proved that each polyhedral map $G$ on any compact $2$-manifold $\mathbb{M}$ with Euler characteristic $\chi (\mathbb{M})\le 0$ contains a path $P_k$ such that each vertex of this path has, in $G$, degree $\le k\left\lfloor \frac{5+\sqrt{49-24 \chi (\mathbb{M})}}{2}\right\rfloor $. Moreover, this bound is attained for $k=1$ or $k\ge 2$, $k$ even. In this paper we prove that for each odd $k\ge \frac{4}{3} \left\lfloor \frac{5+\sqrt{49-24\chi (\mathbb{M})}}{2}\right\rfloor +1$, this bound is the best possible on infinitely many compact $2$-manifolds, but on infinitely many other compact $2$-manifolds the upper bound can be lowered to $\left\lfloor (k-\frac{1}{3})\frac{5+\sqrt{49-24\chi (\mathbb{M})}}{2}\right\rfloor $. (English)
Keyword: graphs
Keyword: path
Keyword: polyhedral map
Keyword: embeddings
MSC: 05C10
MSC: 05C38
MSC: 52B10
MSC: 52B70
MSC: 57M15
idZBL: Zbl 1079.05502
idMR: MR1777477
.
Date available: 2009-09-24T10:35:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127593
.
Reference: [FaJe] I. Fabrici, S. Jendroľ: Subgraphs with restricted degrees of their vertices in planar $3$-connected graphs.Graphs Combin. 13 (1997), 245–250. MR 1469824, 10.1007/BF03353001
Reference: [GrSh] B. Grünbaum, G. C. Shephard: Analogues for tiling of Kotzig’s theorem on minimal weights of edges.Ann. Discrete Math. 12 (1982), 129–140. MR 0806977
Reference: [Ivan] J. Ivančo: The weight of a graph.Ann. Discrete Math. 51 (1992), 113–116. MR 1206252, 10.1016/S0167-5060(08)70614-9
Reference: [Jen] S. Jendroľ: Paths with restricted degrees of their vertices in planar graphs.Czechoslovak Math. J. 49 (124) (1999), 481–490. MR 1708382, 10.1023/A:1022411100562
Reference: [JeVo1] S. Jendroľ, H.-J. Voss: A local property of polyhedral maps on compact $2$-dimensional manifolds.Discrete Math. 212 (2000), 111–120. MR 1748678, 10.1016/S0012-365X(99)00329-5
Reference: [JeVo2] S. Jendroľ, H.-J. Voss: Light paths with an odd number of vertices in large polyhedral maps.Ann. Comb. 2 (1998), 313–324. MR 1774972, 10.1007/BF01608528
Reference: [Jun] M. Jungerman: Ph. D. Thesis. Univ. of California.Santa Cruz, California 1974.
Reference: [Ko1] A. Kotzig: Contribution to the theory of Eulerian polyhedra.Math. Čas. SAV (Math. Slovaca) 5 (1955), 111–113. MR 0074837
Reference: [Ko2] A. Kotzig: Extremal polyhedral graphs.Ann. New York Acad. Sci. 319 (1979), 569–570.
Reference: [Rin] G. Ringel: Map Color Theorem.Springer-Verlag Berlin (1974). Zbl 0287.05102, MR 0349461
Reference: [Zaks] J. Zaks: Extending Kotzig’s theorem.Israel J. Math. 45 (1983), 281–296. Zbl 0524.05031, MR 0720304, 10.1007/BF02804013
.

Files

Files Size Format View
CzechMathJ_50-2000-3_10.pdf 361.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo