Previous |  Up |  Next

Article

Title: Methods of oscillation theory of half-linear second order differential equations (English)
Author: Došlý, Ondřej
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 3
Year: 2000
Pages: 657-671
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate oscillatory properties of the second order half-linear equation \[ (r(t)\Phi (y^{\prime }))^{\prime }+c(t)\Phi (y)=0, \quad \Phi (s):= |s|^{p-2}s. \qquad \mathrm{{(*)}}\] Using the Riccati technique, the variational method and the reciprocity principle we establish new oscillation and nonoscillation criteria for (*). We also offer alternative methods of proofs of some recent oscillation results. (English)
Keyword: half-linear equation
Keyword: Riccati technique
Keyword: variational principle
Keyword: reciprocity principle
Keyword: principal solution
Keyword: oscillation and nonoscillation criteria
MSC: 34C10
idZBL: Zbl 1079.34512
idMR: MR1777486
.
Date available: 2009-09-24T10:36:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127601
.
Reference: [1] C. D. Ahlbrandt: Equivalent boundary value problems for self-adjoint differential systems.J. Differential Equations 9 (1971), 420–435. Zbl 0218.34020, MR 0284636, 10.1016/0022-0396(71)90015-5
Reference: [2] C. D. Ahlbrandt: Principal and antiprincipal solutions of self-adjoint differential systems and their reciprocals.Rocky Mountain J. Math. 2 (1972), 169–189. MR 0296388, 10.1216/RMJ-1972-2-2-169
Reference: [3] M. Del Pino, M. Elquenta, R. Manachevich: Generalizing Hartman’s oscillation result for $(|x^{\prime }|^{p-2}x^{\prime })^{\prime }+c(t)|x|^{p-2}x=0$, $p>1$.Houston J. Math. 17 (1991), 63–70. MR 1107187
Reference: [4] O. Došlý: Oscillation criteria for half-linear second order differential equations.Hiroshima J. Math. 28 (1998), 507–521. MR 1657543, 10.32917/hmj/1206126680
Reference: [5] O. Došlý: A remark on conjugacy of half-linear second order differential equations.Math. Slovaca 2000 (to appear). MR 1764346
Reference: [6] O. Došlý: Principal solutions and transformations of linear Hamiltonian systems.Arch. Math. 28 (1992), 113–120. MR 1201872
Reference: [7] O. Došlý, A. Lomtatidze: Oscillation and nonoscillation criteria for half-linear second order differential equations.(to appear). MR 2259737
Reference: [8] Á. Elbert: A half-linear second order differential equation.Colloq. Math. Soc. János Bolyai 30 (1979), 158–180.
Reference: [9] Á. Elbert: Oscillation and nonoscillation theorems for some non-linear ordinary differential equations.Lecture Notes in Math. 964 (1982), 187–212. 10.1007/BFb0064999
Reference: [10] Á. Elbert: Asymptotic behaviour of autonomous half-linear differential systems on the plane.Studia Sci. Math. Hungar. 19 (1984), 447–464. Zbl 0629.34066, MR 0874513
Reference: [11] Á. Elbert, T. Kusano: Principal solutions of nonoscillatory half-linear differential equations.Adv. Math. Sci. Appl. 18 (1998), 745–759.
Reference: [12] E. Hille: Nonoscillation theorems.Trans. Amer. Math. Soc. 64 (1948), 234–252. MR 0027925, 10.1090/S0002-9947-1948-0027925-7
Reference: [13] J. Jaroš, T. Kusano: A Picone type identity for half-linear differential equations.Acta Math. Univ. Comen. 68 (1999), 137–151. MR 1711081
Reference: [14] T. Kusano, Y. Naito: Oscillation and nonoscillation criteria for second order quasilinear differential equations.Acta Math. Hungar. 76 (1997), 81–99. MR 1459772, 10.1007/BF02907054
Reference: [15] T. Kusano, Y. Naito, A. Ogata: Strong oscillation and nonoscillation of quasilinear differential equations of second order.Differential Equations Dynam. Systems 2 (1994), 1–10. MR 1386034
Reference: [16] H. J. Li: Oscillation criteria for half-linear second order differential equations.Hiroshima Math. J. 25 (1995), 571–583. Zbl 0872.34018, MR 1364075, 10.32917/hmj/1206127633
Reference: [17] H. J. Li, C. C. Yeh: Sturmian comparison theorem for half-linear second order differential equations.Proc. Roy. Soc. Edinburgh 125A (1996), 1193–1204. MR 1362999
Reference: [18] A. Lomtatidze: Oscillation and nonoscillation of Emden-Fowler type equation of second order.Arch. Math. 32 (1996), 181–193. MR 1421855
Reference: [19] R. Mařík: Nonnegativity of functionals corresponding to the second order half-linear differential equation, submitted..
Reference: [20] J. D. Mirzov: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418–425. Zbl 0327.34027, MR 0402184, 10.1016/0022-247X(76)90120-7
Reference: [21] J. D. Mirzov: Principal and nonprincipal solutions of a nonoscillatory system.Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343
Reference: [22] A. Wintner: On the non-existence of conjugate points.Amer. J. Math. 73 (1951), 368–380. MR 0042005, 10.2307/2372182
.

Files

Files Size Format View
CzechMathJ_50-2000-3_18.pdf 375.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo