Previous |  Up |  Next

Article

Title: Some topological properties of $\omega$-covering sets (English)
Author: Nowik, Andrzej
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 4
Year: 2000
Pages: 865-877
Summary lang: English
.
Category: math
.
Summary: We prove the following theorems: There exists an ${\omega }$-covering with the property $s_0$. Under $\mathop {\mathrm cov}\nolimits ({\mathcal N}) = $ there exists $X$ such that $ \forall _{B \in {\mathcal B}or} [B\cap X$ is not an ${\omega }$-covering or $X\setminus B$ is not an ${\omega }$-covering]. Also we characterize the property of being an ${\omega }$-covering. (English)
Keyword: ${\omega }$-covering set
Keyword: ${\mathcal E}$
Keyword: hereditarily nonparadoxical set
MSC: 03E15
MSC: 03E20
MSC: 28A05
MSC: 28E15
idZBL: Zbl 1079.03547
idMR: MR1792976
.
Date available: 2009-09-24T10:38:39Z
Last updated: 2016-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/127616
.
Reference: [BJ] T. Bartoszyński, H. Judah: Borel images of sets of reals.Real Anal. Exchange 20(2) (1994/5), 536–558. MR 1348078
Reference: [C] T. J. Carlson: Strong measure zero and strongly meager sets.Proc. Amer. Math. Soc. 118 (1993), 577–586. Zbl 0787.03037, MR 1139474, 10.1090/S0002-9939-1993-1139474-6
Reference: [E] R. Engelking: General Topology, Revised and Completed Edition. Sigma Series in Pure Mathematics, vol. 6.Heldermann Verlag, Berlin, 1989. MR 1039321
Reference: [K1] P. Komjáth: Large small sets.Colloq. Math. 56 (1988), 231–233. MR 0991209
Reference: [K2] P. Komjáth: Some remarks on second category sets.Colloq. Math. 66 (1993), 57–62. MR 1242645
Reference: [M] K. Muthuvel: Certain measure zero, first category sets.Real Anal. Exchange 17 (1991–92), 771–774. MR 1171418
Reference: [P] M. Penconek: On nonparadoxical sets.Fund. Math. 139 (1991), 177–191. Zbl 0763.04005, MR 1149411
.

Files

Files Size Format View
CzechMathJ_50-2000-4_14.pdf 348.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo