| Title: | On dense subspaces satisfying stronger separation axioms (English) | 
| Author: | Alas, Ofelia T. | 
| Author: | Tkachenko, Mikhail G. | 
| Author: | Tkachuk, Vladimir V. | 
| Author: | Wilson, Richard G. | 
| Author: | Yaschenko, Ivan V. | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 51 | 
| Issue: | 1 | 
| Year: | 2001 | 
| Pages: | 15-28 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We prove that it is independent of ZFC whether every Hausdorff countable space of weight less than $c$ has a dense regular subspace. Examples are given of countable Hausdorff spaces of weight $c$ which do not have dense Urysohn subspaces. We also construct an example of a countable Urysohn space, which has no dense completely Hausdorff subspace. On the other hand, we establish that every Hausdorff space of $\pi$-weight less than $\mathfrak p$ has a dense completely Hausdorff (and hence Urysohn) subspace. We show that there exists a Tychonoff space without dense normal subspaces and give other examples of spaces without “good” dense subsets. (English) | 
| Keyword: | Hausdorff space | 
| Keyword: | Urysohn space | 
| Keyword: | completely Hausdorff space | 
| Keyword: | filter of dense sets | 
| MSC: | 22A05 | 
| MSC: | 54C10 | 
| MSC: | 54C25 | 
| MSC: | 54D06 | 
| MSC: | 54D15 | 
| MSC: | 54D25 | 
| MSC: | 54H11 | 
| idZBL: | Zbl 1079.54518 | 
| idMR: | MR1814628 | 
| . | 
| Date available: | 2009-09-24T10:39:14Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/127622 | 
| . | 
| Reference: | [A] A. V. Arhangel’skii: Structure and classification of topological spaces and cardinal invariants.Uspekhi Mat. Nauk 33 (1978), 29–84. (Russian) MR 0526012 | 
| Reference: | [A1] A. V. Arhangel’skii: Continuous mappings, factorization theorems, and function spaces.Trudy Moskov. Mat. Obshch. 47 (1984), 3–21. (Russian) MR 0774944 | 
| Reference: | [ATTW] O. T. Alas, M. G. Tkačenko, V. V. Tkachuk and R. G. Wilson: Connectifying some spaces.Topology Appl. 71 (1996), 203–215. MR 1397942, 10.1016/0166-8641(95)00012-7 | 
| Reference: | [B] R. H. Bing: A countable connected Hausdorff space.Proc. Amer. Math. Soc. 4 (1953), 474. MR 0060806, 10.1090/S0002-9939-1953-0060806-9 | 
| Reference: | [vD] E. van Douwen: The integers and topology.Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North Holland P.C., 1984, pp. 111–167. Zbl 0561.54004, MR 0776622 | 
| Reference: | [E] R. Engelking: General Topology.PWN, Warszawa, 1977. Zbl 0373.54002, MR 0500780 | 
| Reference: | [M1] V. I. Malykhin: A Fréchet-Urysohn compact space without points of countable character.Mat. Zametky 41 (1987), 365–376. (Russian) MR 0893365 | 
| Reference: | [M2] V. I. Malykhin: On dense subspaces of topological spaces.General Topology—Mappings of Topological Spaces; Proceedings of the Moscow Seminar on General Topology, Moscow Univ. P.H., Moscow, 1986, pp. 65–76. (Russian) MR 1080759 | 
| Reference: | [Na] I. Namioka: Separate continuity and joint continuity.Pacific J. Math. 51 (1974), 515–531. Zbl 0294.54010, MR 0370466, 10.2140/pjm.1974.51.515 | 
| Reference: | [No] N. Noble: The continuity of functions on Cartesian products.Trans. Amer. Math. Soc. 149 (1970), 187–198. Zbl 0229.54028, MR 0257987, 10.1090/S0002-9947-1970-0257987-5 | 
| Reference: | [RE] E. A. Reznichenko: A pseudocompact space in which only the subsets of complete power can be non-closed.Vestnik Mosk. Univ., Ser. Matem., Mech. 6 (1989), 69–70. MR 1065983 | 
| Reference: | [RO] P. Roy: A countable connected Urysohn space with a dispersion point.Duke Math. J. 33 (1966), 331–333. Zbl 0147.22804, MR 0196701, 10.1215/S0012-7094-66-03337-0 | 
| Reference: | [T] M. G. Tkačenko: On a property of compact spaces.Proceedings of the Moscow Seminar on General Topology, Moscow University P. H., Moscow, 1981, pp. . | 
| . |