Previous |  Up |  Next

Article

Title: Multifibrations. A class of shape fibrations with the path lifting property (English)
Author: Giraldo, Antonio
Author: Sanjurjo, Jose M. R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 1
Year: 2001
Pages: 29-38
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce a class of maps possessing a multivalued homotopy lifting property with respect to every topological space. We call these maps multifibrations and they represent a formally stronger concept than that of shape fibration. Multifibrations have the interesting property of being characterized in a completely intrinsic way by a path lifting property involving only the total and the base space of the fibration. We also show that multifibrations (and also, with some restrictions, shape fibrations) have a lifting property for homotopies of fine multivalued maps. This implies, when the spaces considered are metric compacta, that the possibility of lifting a fine multivalued map is a property of the corresponding strong shape morphism and not of the particular map considered. (English)
Keyword: shape fibration
Keyword: multivalued map
Keyword: path lifting property
Keyword: strong shape
MSC: 54C56
MSC: 55P55
MSC: 55R05
idZBL: Zbl 1079.55503
idMR: MR1814629
.
Date available: 2009-09-24T10:39:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127623
.
Reference: [B1] K. Borsuk: On movable compacta.Fund. Math. 66 (1969), 137–146. Zbl 0189.53802, MR 0251698, 10.4064/fm-66-1-137-146
Reference: [B2] K. Borsuk: Theory of Shape (Monografie Matematyczne 59).Polish Scientific Publishers, Warszawa, 1975. MR 0418088
Reference: [C] F. W. Cathey: Shape fibrations and strong shape theory.Topology Appl. 14 (1982), 13–30. Zbl 0505.55020, MR 0662809, 10.1016/0166-8641(82)90044-X
Reference: [Č1] Z. Čerin: Shape theory intrinsically.Publ. Mat. 37 (1993), 317–334. MR 1249234, 10.5565/PUBLMAT_37293_06
Reference: [Č2] Z. Čerin: Proximate topology and shape theory.Proc. Roy. Soc. Edinburgh 125 (1995), 595–615. MR 1359494, 10.1017/S0308210500032704
Reference: [Č3] Z. Čerin: Approximate fibrations.To appear.
Reference: [CD] D. Coram and P. F. Duvall, Jr.: Approximate fibrations.Rocky Mountain J. Math. 7 (1977), 275–288. MR 0442921, 10.1216/RMJ-1977-7-2-275
Reference: [CP] J. M. Cordier and T. Porter: Shape Theory. Categorical Methods of Approximation (Ellis Horwood Series: Mathematics and its Applications).Ellis Horwood Ltd., Chichester, 1989. MR 1000348
Reference: [DS1] J. Dydak and J. Segal: Shape Theory: An Introduction (Lecture Notes in Math. 688).Springer-Verlag, Berlin, 1978. MR 0520227
Reference: [DS2] J. Dydak and J. Segal: A list of open problems in shape theory.J. Van Mill and G. M. Reed: Open problems in Topology, North Holland, Amsterdam, 1990, pp. 457–467. MR 1078663
Reference: [F] J. E. Felt: $\epsilon $-continuity and shape.Proc. Amer. Math. Soc. 46 (1974), 426–430. MR 0362206
Reference: [G] A. Giraldo: Shape fibrations, multivalued maps and shape groups.Canad. J. Math 50 (1998), 342–355. Zbl 0904.54010, MR 1618314, 10.4153/CJM-1998-018-7
Reference: [GS] A. Giraldo and J. M. R. Sanjurjo: Strong multihomotopy and Steenrod loop spaces.J. Math. Soc. Japan. 47 (1995), 475–489. MR 1331325, 10.2969/jmsj/04730475
Reference: [K] R. W. Kieboom: An intrinsic characterization of the shape of paracompacta by means of non-continuous single-valued maps.Bull. Belg. Math. Soc. 1 (1994), 701–711. Zbl 0814.54013, MR 1315365, 10.36045/bbms/1103408637
Reference: [Ku] K. Kuratowski: Topology I.Academic Press, New York, 1966. MR 0217751
Reference: [M] S. Mardešić: Approximate fibrations and shape fibrations.Proc. of the International Conference on Geometric Topology, PWN, Polish Scientific Publishers, 1980, pp. 313–322. MR 0656763
Reference: [MR1] S. Mardešić and T. B. Rushing: Shape fibrations.General Topol. Appl. 9 (1978), 193–215. MR 0510901, 10.1016/0016-660X(78)90023-5
Reference: [MR2] S. Mardešić and T. B. Rushing: Shape fibrations II.Rocky Mountain J. Math. 9 (1979), 283–298. MR 0519943, 10.1216/RMJ-1979-9-2-283
Reference: [MS] S. Mardešić and J. Segal: Shape Theory.North Holland, Amsterdam, 1982. MR 0676973
Reference: [Mi] E. Michael: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl 0043.37902, MR 0042109, 10.1090/S0002-9947-1951-0042109-4
Reference: [MoR] M. A. Morón and F. R. Ruiz del Portal: Multivalued maps and shape for paracompacta.Math. Japon. 39 (1994), 489–500. MR 1278864
Reference: [S1] J. M. R. Sanjurjo: A non-continuous description of the shape category of compacta.Quart. J. Math. Oxford (2) 40 (1989), 351–359. Zbl 0697.55012, MR 1010825
Reference: [S2] J. M. R. Sanjurjo: Multihomotopy sets and transformations induced by shape.Quart. J. Math. Oxford (2) 42 (1991), 489–499. Zbl 0760.54012, MR 1135307
Reference: [S3] J. M. R. Sanjurjo: An intrinsic description of shape.Trans. Amer. Math. Soc. 329 (1992), 625–636. Zbl 0748.54005, MR 1028311, 10.1090/S0002-9947-1992-1028311-X
Reference: [S4] J. M. R. Sanjurjo: Multihomotopy, Čech spaces of loops and shape groups.Proc. London Math. Soc. (3) 69 (1994), 330–344. Zbl 0826.55004, MR 1281968
.

Files

Files Size Format View
CzechMathJ_51-2001-1_3.pdf 336.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo