Previous |  Up |  Next

Article

References:
[1] P. Conrad and J. E. Diem: The ring of polar preserving endomorphisms of an Abelian lattice-ordered group. Illinois J. Math. 15 (1971), 222–240. MR 0285462
[2] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. MR 0171864 | Zbl 0137.02001
[3] R. H. Redfield: Constructing lattice-ordered fields and division rings. Bull. Austral. Math. Soc. 40 (1989), 365–369. DOI 10.1017/S0004972700017391 | MR 1037630 | Zbl 0683.12015
[4] R. H. Redfield: Lattice-ordered fields as convolution algebras. J. Algebra 153 (1992), 319–356. DOI 10.1016/0021-8693(92)90158-I | MR 1198204 | Zbl 0785.06012
[5] R. H. Redfield: Lattice-ordered power series fields. J. Austral. Math. Soc. (Series A) 52 (1992), 299–321. DOI 10.1017/S1446788700035047 | MR 1151288 | Zbl 0766.06019
[6] P. Ribenboim: Noetherian rings of generalized power series. J. Pure Appl. Algebra 79 (1992), 293–312. DOI 10.1016/0022-4049(92)90056-L | MR 1167578 | Zbl 0761.13007
[7] N. Schwartz: Lattice-ordered fields. Order 3 (1986), 179–194. DOI 10.1007/BF00390108 | MR 0865462 | Zbl 0603.06009
[8] S. A. Steinberg: Personal communication. (1990).
[9] R. R. Wilson: Lattice orderings on the real field. Pacific J. Math. 63 (1976), 571–577. DOI 10.2140/pjm.1976.63.571 | MR 0406986 | Zbl 0297.12101
Partner of
EuDML logo