Previous |  Up |  Next

Article

Title: Subfields of lattice-ordered fields that mimic maximal totally ordered subfields (English)
Author: Redfield, R. H.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 1
Year: 2001
Pages: 143-161
.
Category: math
.
MSC: 06F25
MSC: 12J15
idZBL: Zbl 1079.12005
idMR: MR1814640
.
Date available: 2009-09-24T10:40:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127634
.
Reference: [1] P. Conrad and J. E. Diem: The ring of polar preserving endomorphisms of an Abelian lattice-ordered group.Illinois J. Math. 15 (1971), 222–240. MR 0285462, 10.1215/ijm/1256052710
Reference: [2] L. Fuchs: Partially Ordered Algebraic Systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864
Reference: [3] R. H. Redfield: Constructing lattice-ordered fields and division rings.Bull. Austral. Math. Soc. 40 (1989), 365–369. Zbl 0683.12015, MR 1037630, 10.1017/S0004972700017391
Reference: [4] R. H. Redfield: Lattice-ordered fields as convolution algebras.J. Algebra 153 (1992), 319–356. Zbl 0785.06012, MR 1198204, 10.1016/0021-8693(92)90158-I
Reference: [5] R. H. Redfield: Lattice-ordered power series fields.J. Austral. Math. Soc. (Series A) 52 (1992), 299–321. Zbl 0766.06019, MR 1151288, 10.1017/S1446788700035047
Reference: [6] P. Ribenboim: Noetherian rings of generalized power series.J. Pure Appl. Algebra 79 (1992), 293–312. Zbl 0761.13007, MR 1167578, 10.1016/0022-4049(92)90056-L
Reference: [7] N. Schwartz: Lattice-ordered fields.Order 3 (1986), 179–194. Zbl 0603.06009, MR 0865462, 10.1007/BF00390108
Reference: [8] S. A. Steinberg: Personal communication.(1990).
Reference: [9] R. R. Wilson: Lattice orderings on the real field.Pacific J. Math. 63 (1976), 571–577. Zbl 0297.12101, MR 0406986, 10.2140/pjm.1976.63.571
.

Files

Files Size Format View
CzechMathJ_51-2001-1_14.pdf 419.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo