Title:
|
Subfields of lattice-ordered fields that mimic maximal totally ordered subfields (English) |
Author:
|
Redfield, R. H. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
51 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
143-161 |
. |
Category:
|
math |
. |
MSC:
|
06F25 |
MSC:
|
12J15 |
idZBL:
|
Zbl 1079.12005 |
idMR:
|
MR1814640 |
. |
Date available:
|
2009-09-24T10:40:50Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127634 |
. |
Reference:
|
[1] P. Conrad and J. E. Diem: The ring of polar preserving endomorphisms of an Abelian lattice-ordered group.Illinois J. Math. 15 (1971), 222–240. MR 0285462, 10.1215/ijm/1256052710 |
Reference:
|
[2] L. Fuchs: Partially Ordered Algebraic Systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864 |
Reference:
|
[3] R. H. Redfield: Constructing lattice-ordered fields and division rings.Bull. Austral. Math. Soc. 40 (1989), 365–369. Zbl 0683.12015, MR 1037630, 10.1017/S0004972700017391 |
Reference:
|
[4] R. H. Redfield: Lattice-ordered fields as convolution algebras.J. Algebra 153 (1992), 319–356. Zbl 0785.06012, MR 1198204, 10.1016/0021-8693(92)90158-I |
Reference:
|
[5] R. H. Redfield: Lattice-ordered power series fields.J. Austral. Math. Soc. (Series A) 52 (1992), 299–321. Zbl 0766.06019, MR 1151288, 10.1017/S1446788700035047 |
Reference:
|
[6] P. Ribenboim: Noetherian rings of generalized power series.J. Pure Appl. Algebra 79 (1992), 293–312. Zbl 0761.13007, MR 1167578, 10.1016/0022-4049(92)90056-L |
Reference:
|
[7] N. Schwartz: Lattice-ordered fields.Order 3 (1986), 179–194. Zbl 0603.06009, MR 0865462, 10.1007/BF00390108 |
Reference:
|
[8] S. A. Steinberg: Personal communication.(1990). |
Reference:
|
[9] R. R. Wilson: Lattice orderings on the real field.Pacific J. Math. 63 (1976), 571–577. Zbl 0297.12101, MR 0406986, 10.2140/pjm.1976.63.571 |
. |