Previous |  Up |  Next

Article

Title: $F$-continuous graphs (English)
Author: Chartrand, Gary
Author: Jarrett, Elzbieta B.
Author: Saba, Farrokh
Author: Salehi, Ebrahim
Author: Zhang, Ping
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 351-361
Summary lang: English
.
Category: math
.
Summary: For a nontrivial connected graph $F$, the $F$-degree of a vertex $v$ in a graph $G$ is the number of copies of $F$ in $G$ containing $v$. A graph $G$ is $F$-continuous (or $F$-degree continuous) if the $F$-degrees of every two adjacent vertices of $G$ differ by at most 1. All $P_3$-continuous graphs are determined. It is observed that if $G$ is a nontrivial connected graph that is $F$-continuous for all nontrivial connected graphs $F$, then either $G$ is regular or $G$ is a path. In the case of a 2-connected graph $F$, however, there always exists a regular graph that is not $F$-continuous. It is also shown that for every graph $H$ and every 2-connected graph $F$, there exists an $F$-continuous graph $G$ containing $H$ as an induced subgraph. (English)
Keyword: $F$-degree
Keyword: $F$-degree continuous
MSC: 05C12
MSC: 05C38
MSC: 05C40
MSC: 05C75
idZBL: Zbl 0977.05042
idMR: MR1844315
.
Date available: 2009-09-24T10:43:04Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127652
.
Reference: [1] G. Chartrand, L. Eroh, M. Schultz and P. Zhang: An introduction to analytic graph theory.Utilitas Math (to appear). MR 1832600
Reference: [2] G. Chartrand, K. S.  Holbert, O. R.  Oellermann and H. C.  Swart: $F$-degrees in graphs.Ars Combin. 24 (1987), 133–148. MR 0917968
Reference: [3] G.  Chartrand and L.  Lesniak: Graphs $\&$ Digraphs (third edition).Chapman $\&$ Hall, New York, 1996. MR 1408678
Reference: [4] P.  Erdös and H.  Sachs: Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl.Wiss Z. Univ. Halle, Math-Nat. 12 (1963), 251–258. MR 0165515
Reference: [5] J.  Gimbel and P.  Zhang: Degree-continuous graphs.Czechoslovak Math. J (to appear). MR 1814641
Reference: [6] D.  König: Über Graphen und ihre Anwendung auf Determinantheorie und Mengenlehre.Math. Ann. 77 (1916), 453–465. MR 1511872, 10.1007/BF01456961
.

Files

Files Size Format View
CzechMathJ_51-2001-2_10.pdf 365.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo