Previous |  Up |  Next

Article

Title: The general structure of inverse polynomial modules (English)
Author: Park, Sangwon
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 343-349
Summary lang: English
.
Category: math
.
Summary: In this paper we compute injective, projective and flat dimensions of inverse polynomial modules as $R[x]$-modules. We also generalize Hom and Ext functors of inverse polynomial modules to any submonoid but we show Tor functor of inverse polynomial modules can be generalized only for a symmetric submonoid. (English)
Keyword: module
Keyword: inverse polynomial
Keyword: homological dimensions
Keyword: Hom
Keyword: Ext
Keyword: Tor
MSC: 13C11
MSC: 16D50
MSC: 16D80
MSC: 16E05
MSC: 16E10
MSC: 16E30
MSC: 16S36
idZBL: Zbl 0983.16006
idMR: MR1844314
.
Date available: 2009-09-24T10:42:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127651
.
Reference: [1] F. S. Macaulay: The algebraic theory of modular system.Cambridge Tracts in Math. 19 (1916).
Reference: [2] H.  Matsumura: Commutative Algebra.W. A. Benjamin, Inc., New York, 1970. Zbl 0211.06501, MR 0266911
Reference: [3] A. S.  McKerrow: On the injective dimension of modules of power series.Quart J.  Math. Oxford Ser. (2), 25 (1974), 359–368. Zbl 0302.16027, MR 0371881, 10.1093/qmath/25.1.359
Reference: [4] D. G. Northcott: Injective envelopes and inverse polynomials.J. London Math. Soc. (2), 8 (1974), 290–296. Zbl 0284.13012, MR 0360555
Reference: [5] S. Park: Inverse polynomials and injective covers.Comm. Algebra 21 (1993), 4599–4613. Zbl 0794.16004, MR 1242851, 10.1080/00927879308824819
Reference: [6] S. Park: The Macaulay-Northcott functor.Arch. Math. (Basel) 63 (1994), 225–230. Zbl 0804.18009, MR 1287251, 10.1007/BF01189824
Reference: [7] J. Rotman: An Introduction to Homological Algebra.Academic Press Inc., New York, 1979. Zbl 0441.18018, MR 0538169
.

Files

Files Size Format View
CzechMathJ_51-2001-2_9.pdf 305.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo