Previous |  Up |  Next

Article

Title: Finitely valued $f$-modules, an addendum (English)
Author: Steinberg, Stuart A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 387-394
Summary lang: English
.
Category: math
.
Summary: In an $\ell $-group $M$ with an appropriate operator set $\Omega $ it is shown that the $\Omega $-value set $\Gamma _{\Omega }(M)$ can be embedded in the value set $\Gamma (M)$. This embedding is an isomorphism if and only if each convex $\ell $-subgroup is an $\Omega $-subgroup. If $\Gamma (M)$ has a.c.c. and $M$ is either representable or finitely valued, then the two value sets are identical. More generally, these results hold for two related operator sets $\Omega _1$ and $\Omega _2$ and the corresponding $\Omega $-value sets $\Gamma _{\Omega _1}(M)$ and $\Gamma _{\Omega _2}(M)$. If $R$ is a unital $\ell $-ring, then each unital $\ell $-module over $R$ is an $f$-module and has $\Gamma (M) = \Gamma _R(M)$ exactly when $R$ is an $f$-ring in which $1$ is a strong order unit. (English)
Keyword: lattice-ordered module
Keyword: value set
MSC: 06F15
MSC: 06F25
idZBL: Zbl 0979.06010
idMR: MR1844318
.
Date available: 2009-09-24T10:43:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127655
.
Reference: [1] M.  Anderson and T.  Feil: Lattice-Ordered Groups.D.  Reidel, Dordrecht, 1988. MR 0937703
Reference: [2] A.  Bigard and K.  Keimel: Sur les endomorphismes conservant les polaires d’ un groupe réticulé archimédien.Bull. Soc. Math. France 97 (1970), 81–96. MR 0262137
Reference: [3] A.  Bigard, K.  Keimel, S.  Wolfenstein: Groupes Et Anneaux Réticulés.Springer-Verlag, Berlin, 1977. MR 0552653
Reference: [4] G.  Birkhoff and R. S.  Pierce: Lattice-ordered rings.Am. Acad. Brasil. Ci. 28 (1956), 41–69. MR 0080099
Reference: [5] P.  Conrad: The lattice of all convex $\ell $-subgroups of a lattice-ordered group.Czechoslovak Math. J. 15 (1965), 101–123. MR 0173716
Reference: [6] P.  Conrad: Lattice-Ordered Groups.Tulane Lecture Notes, New Orleans, 1970. Zbl 0258.06011
Reference: [7] P.  Conrad and J.  Diem: The ring of polar preserving endomorphisms of an abelian lattice-ordered group.Illinois J.  Math. 15 (1971), 222–240. MR 0285462, 10.1215/ijm/1256052710
Reference: [8] P.  Conrad, J.  Harvey and C.  Holland: The Hahn embedding theorem for lattice-ordered groups.Trans. Amer. Math. Soc. 108 (1963), 143–169. MR 0151534, 10.1090/S0002-9947-1963-0151534-0
Reference: [9] P.  Conrad and P.  McCarthy: The structure of $f$-algebras.Math. Nachr. 58 (1973), 169–191. MR 0330000, 10.1002/mana.19730580111
Reference: [10] S. A.  Steinberg: Finitely-valued $f$-modules.Pacific J.  Math. 40 (1972), 723–737. Zbl 0218.16008, MR 0306078, 10.2140/pjm.1972.40.723
.

Files

Files Size Format View
CzechMathJ_51-2001-2_13.pdf 329.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo