Previous |  Up |  Next

Article

Title: Subgroups and hulls of Specker lattice-ordered groups (English)
Author: Conrad, Paul F.
Author: Darnel, Michael R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 395-413
Summary lang: English
.
Category: math
.
Summary: In this article, it will be shown that every $\ell $-subgroup of a Specker $\ell $-group has singular elements and that the class of $\ell $-groups that are $\ell $-subgroups of Specker $\ell $-group form a torsion class. Methods of adjoining units and bases to Specker $\ell $-groups are then studied with respect to the generalized Boolean algebra of singular elements, as is the strongly projectable hull of a Specker $\ell $-group. (English)
Keyword: lattice-ordered groups
Keyword: $f$-rings
Keyword: Specker groups
MSC: 06F15
MSC: 06F20
MSC: 06F25
MSC: 12J15
MSC: 46A40
idZBL: Zbl 0978.06011
idMR: MR1844319
.
Date available: 2009-09-24T10:43:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127656
.
Reference: [1] P. F. Conrad: The hulls of representable $\ell $-groups and $f$-rings.J.  Austral. Math. Soc. 16 (1973), 385–415. MR 0344173, 10.1017/S1446788700015391
Reference: [2] P. F. Conrad: Epi-archimedean $\ell $-groups.Czechoslovak Math.  J. 24 (1974), 192–218. MR 0347701
Reference: [3] P. F. Conrad: The hulls of semiprime rings.Czechoslovak Math. J. 28 (1978), 59–86. Zbl 0419.16002, MR 0463223
Reference: [4] P. F. Conrad and M. R.  Darnel: Lattice-ordered groups whose lattices determine their additions.Trans. Amer. Math. Soc. 330 (1992), 575–598. MR 1031238, 10.1090/S0002-9947-1992-1031238-0
Reference: [5] P. F. Conrad and M. R.  Darnel: Countably valued lattice-ordered groups.Algebra Universalis 36 (1996), 81–107. MR 1397569, 10.1007/BF01192710
Reference: [6] P. F. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice-ordered groups.Order 14 (1998), 295–319. MR 1644504
Reference: [7] P. F. Conrad and J. Martinez: Signatures and $S$-discrete lattice-ordered groups.Algebra Universalis 29 (1992), 521–545. MR 1201177, 10.1007/BF01190779
Reference: [8] P. F. Conrad and D.  McAlister: The completion of a $\ell $-group.J.  Austral. Math. Soc. 9 (1969), 182–208. MR 0249340, 10.1017/S1446788700005760
Reference: [9] M. R. Darnel: The Theory of Lattice-ordered Groups.Marcel Dekker, , 1995. MR 1304052
Reference: [10] M. R. Darnel, M.  Giraudet and S. H.  McCleary: Uniqueness of the group operation on the lattice of order-automorphisms of the real line.Algebra Universalis 33 (1995), 419–427. MR 1322783, 10.1007/BF01190709
Reference: [11] W. C. Holland: Partial orders of the group of automorphisms of the real line.Proc. International Conf. on Algebra, Part  1 (Novosibirsk, 1989), pp.  197–207. Zbl 0766.06015, MR 1175773
Reference: [12] J. Jakubík: Lattice-ordered groups with unique addition must be archimedean.Czechoslovak Math.  J. 41(116) (1991), 559–603. MR 1117808
Reference: [13] S. Lin: Some Theorems on Lattice-ordered Groups.Dissertation, University of Kansas, 1991.
Reference: [14] C. Nobeling: Verallgemeinerung eines Satzes von Herrn E. Specker.Invent. Math. 6 (1968), 41–55. MR 0231907, 10.1007/BF01389832
Reference: [15] S. Wolfenstein: Contribution à l’étude des groupes reticulés: Extensions archimédiennes, Groupes à valeurs normales.Thesis, Sci. Math. Paris, 1970.
.

Files

Files Size Format View
CzechMathJ_51-2001-2_14.pdf 454.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo