Previous |  Up |  Next

Article

Title: Certain partial orders on semigroups (English)
Author: Petrich, Mario
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 415-432
Summary lang: English
.
Category: math
.
Summary: Relations introduced by Conrad, Drazin, Hartwig, Mitsch and Nambooripad are discussed on general, regular, completely semisimple and completely regular semigroups. Special properties of these relations as well as possible coincidence of some of them are investigated in some detail. The properties considered are mainly those of being a partial order or compatibility with multiplication. Coincidences of some of these relations are studied mainly on regular and completely regular semigroups. (English)
Keyword: semigroup
Keyword: regular
Keyword: completely semisimple
Keyword: completely regular
Keyword: band of groups
Keyword: normal band of groups
Keyword: partial order
Keyword: compatible with multiplication
Keyword: coincidence of relations
MSC: 06A06
MSC: 06F05
MSC: 20M10
MSC: 20M17
idZBL: Zbl 0983.20056
idMR: MR1844320
.
Date available: 2009-09-24T10:43:44Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127657
.
Reference: [1] W. D. Burgess and R. Raphael: On Conrad’s partial order relation on semiprime rings and on semigroups.Semigroup Forum 16 (1978), 133–140. MR 0491395, 10.1007/BF02194622
Reference: [2] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups, Vol I.Math. Surveys No. 7, Amer. Math. Soc., Providence, 1961. MR 0132791
Reference: [3] P. F. Conrad: The hulls of semiprime rings.Bull. Austral. Math. Soc. 12 (1975), 311–314. Zbl 0297.16003, MR 0374177, 10.1017/S0004972700023911
Reference: [4] M. P. Drazin: A partial order in completely regular semigroups.J.  Algebra 98 (1986), 362–374. Zbl 0578.20057, MR 0826133, 10.1016/0021-8693(86)90003-7
Reference: [5] R. E. Hartwig: How to partially order regular elements.Math. Japon. 25 (1980), 1–13. Zbl 0442.06006, MR 0571255
Reference: [6] E. Hewitt and H. S. Zuckerman: The $l_1$-algebra of a commutative semigroup.Trans. Amer. Math. Soc. 83 (1956), 70–97. MR 0081908
Reference: [7] H. Mitsch: A natural partial order for semigroups.Proc. Amer. Math. Soc. 97 (1986), 384–388. Zbl 0596.06015, MR 0840614, 10.1090/S0002-9939-1986-0840614-0
Reference: [8] K. S. S. Nambooripad: The natural partial order on a regular semigroup.Proc. Edinburgh Math. Soc. 23 (1980), 249–260. Zbl 0459.20054, MR 0620922
Reference: [9] M. Petrich: Regular semigroups satisfying certain conditions on idempotents and ideals.Trans. Amer. Math. Soc. 170 (1972), 245–269. Zbl 0257.20056, MR 0304522, 10.1090/S0002-9947-1972-0304522-0
Reference: [10] M. Petrich: Introduction to Semigroups.Merrill. Columbus, Ohio, 1973, pp. . Zbl 0321.20037, MR 0393206
Reference: [11] M. Petrich: Inverse Semigroups.Wiley, New York, 1984, pp. . Zbl 0546.20053, MR 0752899
Reference: [12] V. V. Rasin: On the variety of Cliffordean semigroups.Semigroup Forum 23 (1981), 201–220. MR 0647112, 10.1007/BF02676644
Reference: [13] I. Sussman: A generalization of Boolean rings.Math. Ann. 136 (1958), 326–338. Zbl 0083.02902, MR 0100563, 10.1007/BF01360238
.

Files

Files Size Format View
CzechMathJ_51-2001-2_15.pdf 380.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo