Previous |  Up |  Next

Article

Title: Unit tangent sphere bundles with constant scalar curvature (English)
Author: Boeckx, E.
Author: Vanhecke, L.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 3
Year: 2001
Pages: 523-544
Summary lang: English
.
Category: math
.
Summary: As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel. (English)
Keyword: unit tangent sphere bundles
Keyword: constant scalar curvature
Keyword: Einstein and Ricci-parallel metrics
MSC: 53C25
idZBL: Zbl 1079.53063
idMR: MR1851545
.
Date available: 2009-09-24T10:44:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127667
.
Reference: [1] J. Berndt, F. Tricerri and L. Vanhecke: Generalized Heisenberg groups and Damek-Ricci harmonic spaces.Lecture Notes in Math. 1598, Springer-Verlag, Berlin, Heidelberg, New York, 1995. MR 1340192
Reference: [2] A. L. Besse: Manifolds all of whose geodesics are closed.Ergeb. Math. Grenzgeb. 93, Springer-Verlag, Berlin, Heidelberg, New York, 1978. Zbl 0387.53010, MR 0496885
Reference: [3] A. L. Besse: Einstein manifolds.Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987. Zbl 0613.53001, MR 0867684
Reference: [4] D. E. Blair: Contact manifolds in Riemannian geometry.Lecture Notes in Math. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976. Zbl 0319.53026, MR 0467588
Reference: [5] D. E. Blair: When is the tangent sphere bundle locally symmetric? Geometry and Topology.World Scientific, Singapore, 1989, pp. 15–30. MR 1001586
Reference: [6] D. E. Blair and T. Koufogiorgos: When is the tangent sphere bundle conformally flat? J.Geom. 49 (1994), 55–66. MR 1261107, 10.1007/BF01228050
Reference: [7] E. Boeckx, O. Kowalski and L. Vanhecke: Riemannian manifolds of conullity two.World Scientific, Singapore, 1996. MR 1462887
Reference: [8] E. Boeckx and L. Vanhecke: Characteristic reflections on unit tangent sphere bundles.Houston J. Math. 23 (1997), 427–448. MR 1690045
Reference: [9] E. Boeckx and L. Vanhecke: Curvature homogeneous unit tangent sphere bundles.Publ. Math. Debrecen 53 (1998), 389–413. MR 1657491
Reference: [10] P. Bueken: Three-dimensional Riemannian manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$.J. Math. Phys. 37 (1996), 4062–4075. MR 1400834
Reference: [11] B.-Y. Chen and L. Vanhecke: Differential geometry of geodesic spheres.J. Reine Angew. Math. 325 (1981), 28–67. MR 0618545
Reference: [12] P. Gilkey, A. Swann and L. Vanhecke: Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator.Quart. J. Math. Oxford 46 (1995), 299–320. MR 1348819, 10.1093/qmath/46.3.299
Reference: [13] A. Gray: Einstein-like manifolds which are not Einstein.Geom. Dedicata 7 (1978), 259–280. Zbl 0378.53018, MR 0505561, 10.1007/BF00151525
Reference: [14] A. Gray and L. Vanhecke: Riemannian geometry as determined by the volumes of small geodesic balls.Acta Math. 142 (1979), 157–198. MR 0521460, 10.1007/BF02395060
Reference: [15] A. Gray and T. J. Willmore: Mean-value theorems for Riemannian manifolds.Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), 343–364. MR 0677493, 10.1017/S0308210500032571
Reference: [16] S. Ivanov and I. Petrova: Riemannian manifolds in which certain curvature operator has constant eigenvalues along each circle.Ann. Global Anal. Geom. 15 (1997), 157–171. MR 1448723, 10.1023/A:1006548328030
Reference: [17] O. Kowalski: A note to a theorem by K. Sekigawa.Comment. Math. Univ. Carolin. 30 (1989), 85–88. Zbl 0679.53043, MR 0995705
Reference: [18] O. Kowalski: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$.Nagoya Math. J. 132 (1993), 1–36. MR 1253692, 10.1017/S002776300000461X
Reference: [19] O. Kowalski: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$.Czechoslovak Math. J. 46 (1996), 427–474. Zbl 0879.53014, MR 1408298
Reference: [20] J. W. Milnor: Curvatures of left invariant metrics on Lie groups.Adv. Math. 21 (1976), 293–329. Zbl 0341.53030, MR 0425012, 10.1016/S0001-8708(76)80002-3
Reference: [21] E. Musso and F. Tricerri: Riemannian metrics on tangent bundles.Ann. Mat. Pura Appl. 150 (1988), 1–20. MR 0946027, 10.1007/BF01761461
Reference: [22] K. Sekigawa and L. Vanhecke: Volume preserving geodesic symmetries on four-dimensional Kähler manifolds.Differential Geometry Peñiscola, 1985, Proceedings, A. M. Naveira, A. Ferrández and F. Mascaró (eds.), Lecture Notes in Math. 1209, Springer, pp. 275–290. MR 0863763
Reference: [23] I. M. Singer: Infinitesimally homogeneous spaces.Comm. Pure Appl. Math. 13 (1960), 685–697. Zbl 0171.42503, MR 0131248, 10.1002/cpa.3160130408
Reference: [24] I. M. Singer and J. A. Thorpe: The curvature of 4-dimensional Einstein spaces.Global Analysis. Papers in honor of K. Kodaira, Princeton University Press, Princeton, 1969, pp. 355–365. MR 0256303
Reference: [25] Z. I. Szabó: Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, I, Local version.J. Differential Geom. 17 (1982), 531–582. MR 0683165
Reference: [26] H. Takagi: Conformally flat Riemannian manifolds admitting a transitive group of isometries.Tôhoku Math. J. 27 (1975), 103–110. Zbl 0323.53037, MR 0442852, 10.2748/tmj/1178241040
Reference: [27] A. Tomassini: Curvature homogeneous metrics on principal fibre bundles.Ann. Mat. Pura Appl. 172 (1997), 287–295. Zbl 0933.53020, MR 1621175, 10.1007/BF01782616
Reference: [28] A. L. Yampol’skii: The curvature of the Sasaki metric of tangent sphere bundles (Russian).Ukrain. Geom. Sb. 28 (1985), 132–145. MR 0801377
.

Files

Files Size Format View
CzechMathJ_51-2001-3_7.pdf 428.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo