Previous |  Up |  Next

Article

Title: Measure of noncompactness of linear operators between spaces of sequences that are $(\bar{N},q)$ summable or bounded (English)
Author: Malkowsky, E.
Author: Rakočević, V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 3
Year: 2001
Pages: 505-522
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate linear operators between arbitrary BK spaces $X$ and spaces $Y$ of sequences that are $(\bar{N},q)$ summable or bounded. We give necessary and sufficient conditions for infinite matrices $A$ to map $X$ into $Y$. Further, the Hausdorff measure of noncompactness is applied to give necessary and sufficient conditions for $A$ to be a compact operator. (English)
Keyword: BK spaces
Keyword: bases
Keyword: matrix transformations
Keyword: measure of noncompactness
MSC: 40H05
MSC: 46A45
MSC: 47B07
MSC: 47B37
idZBL: Zbl 1079.46504
idMR: MR1851544
.
Date available: 2009-09-24T10:44:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127666
.
Reference: [1] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii: Measures of noncompactness and condensing operators.Oper. Theory Adv. Appl. 55 (1992), Birkhäuser Verlag, Basel. MR 1153247, 10.1007/978-3-0348-5727-7_1
Reference: [2] A. M. Aljarrah and E. Malkowsky: BK spaces, bases and linear operators.Suppl. Rend. Circ. Mat. Palermo (2) 52 (1998), 177–191. MR 1644548
Reference: [3] J. Banás and K. Goebl: Measures of noncompactness in Banach spaces.Lecture Notes in Pure and Appl. Math. 60 (1980), Marcel Dekker, New York and Basel. MR 0566245
Reference: [4] G. H. Hardy: Divergent Series.Oxford University Press, 1973. MR 0030620
Reference: [5] E. Malkowsky: Linear operators in certain BK spaces.Bolyai Soc. Math. Stud. 5 (1996), 259–273. Zbl 0861.40007, MR 1432674
Reference: [6] E. Malkowsky and S. D. Parashar: Matrix transformations in spaces of bounded and convergent difference sequences of order $m$.Analysis 17 (1997), 87–97. MR 1451207, 10.1524/anly.1997.17.1.87
Reference: [7] E. Malkowsky and V. Rakočević: The measure of noncompactness of linear operators between certain sequence spaces.Acta Sci. Math. (Szeged) 64 (1998), 151–170. MR 1631981
Reference: [8] E. Malkowsky and V. Rakočević: The measure of noncompactness of linear operators between spaces of $m^{th}$-order difference sequences.Studia Sci. Math. Hungar. 35 (1999), 381–395. MR 1762251
Reference: [9] V. Rakočević: Funkcionalna analiza. Naučna knjiga.Beograd, 1994.
Reference: [10] A. Wilansky: Summability through functional analysis.North-Holland Math. Stud. 85 (1984). Zbl 0531.40008, MR 0738632
.

Files

Files Size Format View
CzechMathJ_51-2001-3_6.pdf 402.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo