Previous |  Up |  Next

Article

Title: A characterization of the interval function of a (finite or infinite) connected graph (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 3
Year: 2001
Pages: 635-642
Summary lang: English
.
Category: math
.
Summary: By the interval function of a finite connected graph we mean the interval function in the sense of H. M. Mulder. This function is very important for studying properties of a finite connected graph which depend on the distance between vertices. The interval function of a finite connected graph was characterized by the present author. The interval function of an infinite connected graph can be defined similarly to that of a finite one. In the present paper we give a characterization of the interval function of each connected graph. (English)
Keyword: distance in a graph
Keyword: interval function
MSC: 05C12
idZBL: Zbl 1079.05505
idMR: MR1851552
.
Date available: 2009-09-24T10:45:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127674
.
Reference: [1] H.-J.  Bandelt and V.  Chepoi: A Helly theorem in weakly modular space.Discrete Math. 160 (1996), 25–39. MR 1417558, 10.1016/0012-365X(95)00217-K
Reference: [2] H.-J.  Bandelt, M.  van de Vel and E.  Verheul: Modular interval spaces.Math. Nachr. 163 (1993), 177–201. MR 1235066, 10.1002/mana.19931630117
Reference: [3] H. M.  Mulder: The Interval Function of a Graph.Mathematish Centrum, Amsterdam, 1980. Zbl 0446.05039, MR 0605838
Reference: [4] H. M.  Mulder: Transit functions on graphs.In preparation. Zbl 1166.05019
Reference: [5] L.  Nebeský: A characterization of the interval function of a connected graph.Czechoslovak Math. J. 44(119) (1994), 173–178. MR 1257943
Reference: [6] L.  Nebeský: Characterizing the interval function of a connected graph.Math. Bohem. 123 (1998), 137–144. MR 1673965
.

Files

Files Size Format View
CzechMathJ_51-2001-3_14.pdf 288.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo