Previous |  Up |  Next

Article

Title: Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles (English)
Author: Abdullayev, F. G.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 3
Year: 2001
Pages: 643-660
Summary lang: English
.
Category: math
.
Summary: Let $C$ be the extended complex plane; $G\subset C$ a finite Jordan with $ 0\in G$; $w=\varphi (z)$ the conformal mapping of $G$ onto the disk $ B\left( {0;\rho _{0}}\right):={\left\rbrace {w\:{\left| {w}\right| }<\rho _{0}} \right\lbrace }$ normalized by $\varphi (0)=0$ and ${\varphi }^{\prime }(0)=1$. Let us set $\varphi _{p}(z):=\int _{0}^{z}{{\left[ {{\varphi } ^{\prime }(\zeta )}\right] }^{{2}/{p}}}\mathrm{d}\zeta $, and let $\pi _{n,p}(z)$ be the generalized Bieberbach polynomial of degree $n$ for the pair $(G,0)$, which minimizes the integral $ \iint \limits _{G}{{\left| {{\varphi }_{p}^{\prime }(z)-{P}_{n}^{\prime }(z)}\right| }}^{p}\mathrm{d}\sigma _{z}$ in the class of all polynomials of degree not exceeding $\le n$ with $P_{n}(0)=0$, ${P}_{n}^{\prime }(0)=1$. In this paper we study the uniform convergence of the generalized Bieberbach polynomials $\pi _{n,p}(z)$ to $\varphi _{p}(z)$ on $\overline{G}$ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency. (English)
Keyword: conformal mapping
Keyword: Quasiconformal curve
Keyword: Bieberbach polynomials
Keyword: complex approximation
MSC: 30C10
MSC: 30C30
MSC: 30C70
MSC: 30E10
idZBL: Zbl 1079.30506
idMR: MR1851553
.
Date available: 2009-09-24T10:45:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127675
.
Reference: [1] F. G. Abdullayev: On the orthogonal polynomials in domains with quasiconformal boundary.Dissertation, Donetsk (1986). (Russian)
Reference: [2] F. G. Abdullayev: On the convergence of Bieberbach polynomials in domains with interior zero angles.Dokl. Akad. Nauk. Ukrain. SSR, Ser. A 12 (1989), 3–5. (Russian) MR 2209974
Reference: [3] F. G. Abdullayev: On the convergence of Fourier series by orthogonal polynomials in domains with piecevise-quasiconformal boundary.Theory of Mappings and Approximation, Naukova Dumka, Kiev, 1989, pp. 3–12.
Reference: [4] F. G. Abdullayev: Uniform convergence of the generalized Bieberbach polynomials in regions with non zero angles.Acta Math. Hungar. 77 (1997), 223–246. Zbl 0904.41003, MR 1485847, 10.1023/A:1006590814228
Reference: [5] F. G. Abdullayev and A. Baki: On the convergence of Bieberbach polynomials in domains with interior zero angles.Complex Anal. Theor. & Appl. 34 (2001). MR 1908583
Reference: [6] F. G. Abdullayev and A. Çavuş: On the uniform convergence of the generalized Bieberbach polynomials in regions with quasiconformal boundary.(to appear).
Reference: [7] L. V. Ahlfors: Lectures on Quasiconformal Mappings.Princeton, NJ: Van Nostrand, 1966. Zbl 0138.06002, MR 0200442
Reference: [8] V. V. Andrievskii: Uniform convergence of Bieberbach polynomials in domains with zero angles.Dokl. Akad. Nauk. Ukrain. SSR, Ser. A (1982), 3–5. (Russian) MR 0659928
Reference: [9] V. V. Andrievskii: Uniform convergence of Bieberbach polynomials in domains with piecewise quasiconformal boundary.Theory of Mappings and Approximation of Functions, Kiev, Naukova Dumka, 1983, pp. 3–18. (Russian) MR 0731089
Reference: [10] V. V. Andrievskii: Convergence of Bieberbach polynomials in domains with quasiconformal boundary.Trans. Ukrainian Math. J. 35 (1984), 233–236. 10.1007/BF01092167
Reference: [11] V. I. Belyi: Conformal mappings and the approximation of analytic functions in domains with a quasiconformal boundary.Math. USSR-Sb. 31 (1977), 289–317. Zbl 0388.30007, 10.1070/SM1977v031n03ABEH002304
Reference: [12] V. I. Belyi and I. E. Pritsker: On the curved wedge condition and the continuity moduli of conformal mapping.Ukrain. Mat. Zh. 45 (1993), 763–769. MR 1299962, 10.1007/BF01061436
Reference: [13] P. J. Davis: Interpolation and Approximation.Blaisdell Publishing Company, 1963. Zbl 0111.06003, MR 0157156
Reference: [14] D. Gaier: On the convergence of the Bieberbach polynomials in regions with corners.Constr. Approx. 4 (1988), 289–305. Zbl 0645.30002, MR 0940296, 10.1007/BF02075463
Reference: [15] D. Gaier: On the convergence of the Bieberbach polynomials in regions with piecewise-analytic boundary.Arch. Math. 58 (1992), 462–470. Zbl 0723.30008, MR 1156578, 10.1007/BF01190116
Reference: [16] D. M. Israfilov: On the approximation properties of extremal polynomials.Dep. VINITI, No. 5461 (1981). (Russian) MR 0648384
Reference: [17] M. V. Keldych: Sur l’approximation en moyenne quadratique des fonctions analytiques.Math. Sb. 5(47) (1939), 391–401. MR 0002591
Reference: [18] I. V. Kulikov: $L_{p}$-convergence of Bieberbach polynomials.Math. USSR-Izv. 15 (1980), 349–371. Zbl 0443.30049, MR 0552553, 10.1070/IM1980v015n02ABEH001240
Reference: [19] O. Lehto and K. I. Virtanen: Quasiconformal mappings in the plane.Springer-Verlag, Berlin, 1973. MR 0344463
Reference: [20] S. N. Mergelyan: Certain questions of the constructive theory of functions.Trudy Math. Inst. Steklov 37 (1951). (Russian) MR 0049390
Reference: [21] Ch. Pommerenke: Univalent Functions.Göttingen, 1975. Zbl 0298.30014, MR 0507768
Reference: [22] I. I. Privalov: Introduction to the theory of functions of a complex variable.Nauka, Moscow, 1984. Zbl 0571.30001, MR 0779289
Reference: [23] V. I. Smirnov and N. A. Lebedev: Functions of a Complex Variable. Constructive Theory.The M.I.T. PRESS, 1968. MR 0229803
Reference: [24] I. B. Simonenko: On the convergence of Bieberbach polynomials in the case of a Lipshitz domain.Math. USSR-Izv. 13 (1980), 166–174. 10.1070/IM1979v013n01ABEH002017
Reference: [25] P. K. Suetin: Polynomials orthogonal over a region and Bieberbach polynomials.Proc. Steklov Inst. Math. 100 (1971), Providence, Rhode Island: Amer. Math. Soc., 1974. Zbl 0282.30034, MR 0463793
Reference: [26] P. M. Tamrazov: Smoothness and Polynomial Approximation.Naukova Dumka, Kiev, 1975. (Russian)
Reference: [27] A. Torchincky: Real variables.Calif. Addison-Wesley, 1988.
Reference: [28] J. L. Walsh: Interpolation and approximation by rational functions in the complex domain.Moscow, 1961. (Russian) Zbl 0106.28103, MR 0218586
Reference: [29] Wu Xue-Mou: On Bieberbach polynomials.Acta Math. Sinica 13 (1963), 145–151. Zbl 0154.07004, MR 0168744
.

Files

Files Size Format View
CzechMathJ_51-2001-3_15.pdf 424.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo