Previous |  Up |  Next

Article

Title: Hypersurfaces in $\mathbb R^n$ and critical points in their external region (English)
Author: Manchón, P. M. G.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 1
Year: 2002
Pages: 1-9
Summary lang: English
.
Category: math
.
Summary: In this paper we study the hypersurfaces $M^n$ given as connected compact regular fibers of a differentiable map $f: \mathbb R^{n+1} \rightarrow \mathbb R$, in the cases in which $f$ has finitely many nondegenerate critical points in the unbounded component of $\mathbb R^{n+1} - M^n$. (English)
Keyword: hypersurface in $\mathbb R^n$
Keyword: nondegenerate critical point
Keyword: noncompact Morse Theory
Keyword: h-cobordism
Keyword: Palais-Smale condition
MSC: 57R70
MSC: 57R80
idZBL: Zbl 1017.57014
idMR: MR1885451
.
Date available: 2009-09-24T10:48:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127696
.
Reference: [1] M. H. Freedman and F. S. Quinn: Topology of 4-Manifolds.Princeton Univ. Press, Princeton, NJ., 1990. MR 1201584
Reference: [2] J. M.  Gamboa and C.  Ueno: Proper poynomial maps: the real case.Lectures Notes in Mathematics, 1524. Real Algebraic Geometry. Proceedings, Rennes, 1991, pp. 240–256. MR 1226257
Reference: [3] V. Guillemin and A. Pollack: Differential Topology.Prentice-Hall, Englewood Cliffs, NJ., 1974. MR 0348781
Reference: [4] M. W.  Hirsch: Differential Topology.Springer-Verlag, Berlin, 1976. Zbl 0356.57001, MR 0448362
Reference: [5] J. Margalef and E. Outerelo: Differential Topology.North Holland, Amsterdam, 1992. MR 1173211
Reference: [6] P. M. G. Manchón: Ph. D. Thesis.(1996), Universidad Complutense de Madrid.
Reference: [7] J. Milnor: Lectures on the $h$-cobordism Theorem.Princeton Univ. Press, Princeton, NJ., 1965. Zbl 0161.20302, MR 0190942
Reference: [8] J. Milnor: A procedure for killing the homotopy groups of differentiable manifolds.Proc. Sympos. Pure Math, Vol. 3 Amer. Math. Soc. Providence, R.I, 1961, pp. 39–55. MR 0130696
Reference: [9] R. S. Palais: Lusternik-Schnirelman theory on Banach manifolds.Topology 5 (1966), 115–132. Zbl 0143.35203, MR 0259955, 10.1016/0040-9383(66)90013-9
Reference: [10] R. S. Palais and S. Smale: A generalized Morse theory.Bull. Amer. Math. Soc. 70 (1964), 165–172. MR 0158411, 10.1090/S0002-9904-1964-11062-4
.

Files

Files Size Format View
CzechMathJ_52-2002-1_1.pdf 349.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo