Previous |  Up |  Next

Article

Keywords:
complemented lattices; orthomodular lattices; exhaustive modular functions; measures; extension; Vitali-Hahn-Saks theorem; Nikodým theorems; Liapunoff theorem
Summary:
We prove an extension theorem for modular functions on arbitrary lattices and an extension theorem for measures on orthomodular lattices. The first is used to obtain a representation of modular vector-valued functions defined on complemented lattices by measures on Boolean algebras. With the aid of this representation theorem we transfer control measure theorems, Vitali-Hahn-Saks and Nikodým theorems and the Liapunoff theorem about the range of measures to the setting of modular functions on complemented lattices.
References:
[1] A. Avallone: Liapunov theorem for modular functions. Internat. J. Theoret. Phys. 34 (1995), 1197–1204. MR 1353662 | Zbl 0841.28007
[2] A. Avallone: Nonatomic vector valued modular functions. Mathematicae Polonae, Ser. I: Comment. Math. 39 (1999), 23–36. MR 1739014 | Zbl 0987.28012
[3] A. Avallone, G. Barbieri and R. Cilia: Control and separating points of modular functions. Math. Slovaca 49 (1999), 155–182. MR 1696950
[4] A. Avallone and J. Hamhalter: Extension theorems (Vector measures on quantum logics). Czechoslovak Math. J. 46 (1996), 179–192. MR 1371699
[5] A. Avallone and M. A. Lepellere: Modular functions: Uniform boundedness and compactness. Rend. Circ. Mat. Palermo 47 (1998), 221–264. DOI 10.1007/BF02844366 | MR 1633479
[6] A. Basile: Controls of families of finitely additive functions. Ricerche Mat. 35 (1986), 291–302. MR 0932439 | Zbl 0648.28007
[7] G. Birkhoff: Lattice Theory. AMS colloquium Publications, Providence, Rhode Island, 25 (1984). MR 0751233
[8] J. K. Brooks, D. Candeloro and A. Martellotti: On finitely additive measures in nuclear spaces. Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 37–50. MR 1628585
[9] I. Fleischer and T. Traynor: Equivalence of group-valued measures on an abstract lattice. Bull. Acad. Pol. Sci., Sér. Sci. Math. 28 (1980), 549–556. MR 0628641
[10] I. Fleischer and T. Traynor: Group-valued modular functions. Algebra Universalis 14 (1982), 287–291. DOI 10.1007/BF02483932 | MR 0654397
[11] G. Grätzer: General Lattice Theory. Pure and Applied Mathematical Series. Academic Press, San Diego, 1978. MR 0509213
[12] V. M. Kadets: A remark on Lyapunov theorem on vector measures. Funct. Anal. Appl. 25 (1991), 295–297. MR 1167727
[13] V. M. Kadets and G. Shekhtman: The Lyapunov theorem for $\ell _p$-valued measures. St Petersburg Math. J. 4 (1993), 961–966. MR 1202728
[14] J. J. Uhl: The range of vector-valued measures. Proc. Amer. Math. Soc. 23 (1969), 158–163. DOI 10.1090/S0002-9939-1969-0264029-1 | MR 0264029
[15] T. Traynor: The Lebesgue decomposition for group-valued set functions. Trans. Amer. Math. Soc. 220 (1976), 307–319. DOI 10.1090/S0002-9947-1976-0419725-8 | MR 0419725 | Zbl 0334.28010
[16] H. Weber: Group- and vector-valued $s$-bounded contents. Measure Theory, Proc. Conf. (Oberwolfach 1983). MR 0786697 | Zbl 0552.28011
[17] H. Weber: Uniform lattices I: A generalization of topological Riesz spaces and topological Boolean rings; Uniform lattices II: Order continuity and exhaustivity. Ann. Mat. Pura Appl. 160 (1991 1991), 347–370. MR 1163215
[18] H. Weber: Valuations on complemented lattices. Inter. J. Theoret. Phys. 34 (1995), 1799–1806. MR 1353726 | Zbl 0843.06005
[19] H. Weber: On modular functions. Funct. Approx. Comment. Math. 24 (1996), 35–52. MR 1453447 | Zbl 0887.06011
[20] H. Weber: Lattice uniformities and modular functions. Atti Sem. Mat. Fis. Univ. Modena XLVII (1999), 159–182. MR 1694416
[21] H. Weber: Complemented uniform lattices. Topology Appl. 105 (2000), 47–64. DOI 10.1016/S0166-8641(99)00049-8 | MR 1761086 | Zbl 1121.54312
Partner of
EuDML logo