Title:
|
A Borel extension approach to weakly compact operators on $C_0(T)$ (English) |
Author:
|
Panchapagesan, T. V. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
52 |
Issue:
|
1 |
Year:
|
2002 |
Pages:
|
97-115 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a quasicomplete locally convex Hausdorff space. Let $T$ be a locally compact Hausdorff space and let $C_0(T) = \lbrace f\: T \rightarrow I$, $f$ is continuous and vanishes at infinity$\rbrace $ be endowed with the supremum norm. Starting with the Borel extension theorem for $X$-valued $\sigma $-additive Baire measures on $T$, an alternative proof is given to obtain all the characterizations given in [13] for a continuous linear map $u\: C_0(T) \rightarrow X$ to be weakly compact. (English) |
MSC:
|
28B05 |
MSC:
|
46G10 |
MSC:
|
47B07 |
MSC:
|
47B38 |
idZBL:
|
Zbl 0996.47041 |
idMR:
|
MR1885460 |
. |
Date available:
|
2009-09-24T10:49:29Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127705 |
. |
Reference:
|
[1] J. Diestel and J. J. Uhl: Vector Measures.Survey No.15, Amer. Math. Soc., Providence, RI., 1977. MR 0453964 |
Reference:
|
[2] N. Dinculeanu: Vector Measures.Pergamon Press, New York, 1967. MR 0206190 |
Reference:
|
[3] N. Dinculeanu and I. Kluvánek: On vector measures.Proc. London Math. Soc. 17 (1967), 505–512. MR 0214722 |
Reference:
|
[4] I. Dobrakov and T. V. Panchapagesan: A simple proof of the Borel extension theorem and weak compactness of operators.(to appear). MR 1940050 |
Reference:
|
[5] R. E. Edwards: Functional Analysis, Theory and Applications.Holt, Rinehart and Winston, New York, 1965. Zbl 0182.16101, MR 0221256 |
Reference:
|
[6] A. Grothendieck: Sur les applications lineares faiblement compactes d’espaces du type C(K).Canad. J. Math. 5 (1953), 129–173. MR 0058866, 10.4153/CJM-1953-017-4 |
Reference:
|
[7] P. R. Halmos: Measure Theory.Van Nostrand, New York, 1950. Zbl 0040.16802, MR 0033869 |
Reference:
|
[8] I. Kluvánek: Characterizations of Fourier-Stieltjes transform of vector and operator valued measures.Czechoslovak Math. J. 17 (1967), 261–277. MR 0230872 |
Reference:
|
[9] T. V. Panchapagesan: On complex Radon measures I.Czechoslovak Math. J. 42 (1992), 599–612. Zbl 0795.28009, MR 1182191 |
Reference:
|
[10] T. V. Panchapagesan: On complex Radon measures II.Czechoslovak Math. J. 43 (1993), 65–82. Zbl 0804.28007, MR 1205231 |
Reference:
|
[11] T. V. Panchapagesan: Applications of a theorem of Grothendieck to vector measures.J. Math. Anal. Appl. 214 (1997), 89–101. MR 1645515, 10.1006/jmaa.1997.5589 |
Reference:
|
[12] T. V. Panchapagesan: Baire and $\sigma $-Borel characterizations of weakly compact sets in $M(T)$.Trans. Amer. Math. Soc. (1998), 4539–4547. Zbl 0946.28008, MR 1615946 |
Reference:
|
[13] T. V. Panchapagesan: Characterizations of weakly compact operators on $C_0(T)$.Trans. Amer. Math. Soc. (1998), 4549–4567. Zbl 0906.47021 |
Reference:
|
[14] T. V. Panchapagesan: On the limitations of the Grothendieck techniques.(to appear). MR 1865743 |
Reference:
|
[15] M. Sion: Outer measures with values in a topological group.Proc. London Math. Soc. 19 (1969), 89–106. Zbl 0167.14503, MR 0239039, 10.1112/plms/s3-19.1.89 |
Reference:
|
[16] E. Thomas: L’integration par rapport a une mesure de Radon vectoriele.Ann. Inst. Fourier (Grenoble) 20 (1970), 55–191. MR 0463396, 10.5802/aif.352 |
. |