Previous |  Up |  Next

Article

Title: A Borel extension approach to weakly compact operators on $C_0(T)$ (English)
Author: Panchapagesan, T. V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 1
Year: 2002
Pages: 97-115
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a quasicomplete locally convex Hausdorff space. Let $T$ be a locally compact Hausdorff space and let $C_0(T) = \lbrace f\: T \rightarrow I$, $f$ is continuous and vanishes at infinity$\rbrace $ be endowed with the supremum norm. Starting with the Borel extension theorem for $X$-valued $\sigma $-additive Baire measures on $T$, an alternative proof is given to obtain all the characterizations given in [13] for a continuous linear map $u\: C_0(T) \rightarrow X$ to be weakly compact. (English)
MSC: 28B05
MSC: 46G10
MSC: 47B07
MSC: 47B38
idZBL: Zbl 0996.47041
idMR: MR1885460
.
Date available: 2009-09-24T10:49:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127705
.
Reference: [1] J.  Diestel and J. J.  Uhl: Vector Measures.Survey No.15, Amer. Math. Soc., Providence, RI., 1977. MR 0453964
Reference: [2] N.  Dinculeanu: Vector Measures.Pergamon Press, New York, 1967. MR 0206190
Reference: [3] N.  Dinculeanu and I.  Kluvánek: On vector measures.Proc. London Math. Soc. 17 (1967), 505–512. MR 0214722
Reference: [4] I.  Dobrakov and T. V.  Panchapagesan: A simple proof of the Borel extension theorem and weak compactness of operators.(to appear). MR 1940050
Reference: [5] R. E. Edwards: Functional Analysis, Theory and Applications.Holt, Rinehart and Winston, New York, 1965. Zbl 0182.16101, MR 0221256
Reference: [6] A.  Grothendieck: Sur les applications lineares faiblement compactes d’espaces du type C(K).Canad. J.  Math. 5 (1953), 129–173. MR 0058866, 10.4153/CJM-1953-017-4
Reference: [7] P. R.  Halmos: Measure Theory.Van Nostrand, New York, 1950. Zbl 0040.16802, MR 0033869
Reference: [8] I.  Kluvánek: Characterizations of Fourier-Stieltjes transform of vector and operator valued measures.Czechoslovak Math.  J. 17 (1967), 261–277. MR 0230872
Reference: [9] T. V.  Panchapagesan: On complex Radon measures I.Czechoslovak Math.  J. 42 (1992), 599–612. Zbl 0795.28009, MR 1182191
Reference: [10] T. V.  Panchapagesan: On complex Radon measures II.Czechoslovak Math.  J. 43 (1993), 65–82. Zbl 0804.28007, MR 1205231
Reference: [11] T. V.  Panchapagesan: Applications of a theorem of Grothendieck to vector measures.J.  Math. Anal. Appl. 214 (1997), 89–101. MR 1645515, 10.1006/jmaa.1997.5589
Reference: [12] T. V.  Panchapagesan: Baire and $\sigma $-Borel characterizations of weakly compact sets in $M(T)$.Trans. Amer. Math. Soc. (1998), 4539–4547. Zbl 0946.28008, MR 1615946
Reference: [13] T. V.  Panchapagesan: Characterizations of weakly compact operators on $C_0(T)$.Trans. Amer. Math. Soc. (1998), 4549–4567. Zbl 0906.47021
Reference: [14] T. V.  Panchapagesan: On the limitations of the Grothendieck techniques.(to appear). MR 1865743
Reference: [15] M.  Sion: Outer measures with values in a topological group.Proc. London Math. Soc. 19 (1969), 89–106. Zbl 0167.14503, MR 0239039, 10.1112/plms/s3-19.1.89
Reference: [16] E.  Thomas: L’integration par rapport a une mesure de Radon vectoriele.Ann. Inst. Fourier (Grenoble) 20 (1970), 55–191. MR 0463396, 10.5802/aif.352
.

Files

Files Size Format View
CzechMathJ_52-2002-1_10.pdf 450.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo