Previous |  Up |  Next

Article

Title: Basic subgroups in abelian group rings (English)
Author: Danchev, Peter V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 1
Year: 2002
Pages: 129-140
Summary lang: English
.
Category: math
.
Summary: Suppose $R$ is a commutative ring with identity of prime characteristic $p$ and $G$ is an arbitrary abelian $p$-group. In the present paper, a basic subgroup and a lower basic subgroup of the $p$-component $U_p(RG)$ and of the factor-group $U_p(RG)/G$ of the unit group $U(RG)$ in the modular group algebra $RG$ are established, in the case when $R$ is weakly perfect. Moreover, a lower basic subgroup and a basic subgroup of the normed $p$-component $S(RG)$ and of the quotient group $S(RG)/G_p$ are given when $R$ is perfect and $G$ is arbitrary whose $G/G_p$ is $p$-divisible. These results extend and generalize a result due to Nachev (1996) published in Houston J. Math., when the ring $R$ is perfect and $G$ is $p$-primary. Some other applications in this direction are also obtained for the direct factor problem and for a kind of an arbitrary basic subgroup. (English)
Keyword: basic and lower basic subgroups
Keyword: units
Keyword: modular abelian group rings
MSC: 16U60
MSC: 20C07
MSC: 20K10
idZBL: Zbl 1003.16026
idMR: MR1885462
.
Date available: 2009-09-24T10:49:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127707
.
Reference: [1] M. F. Atiyah, I. G.  MacDonald: Introduction to Commutative Algebra.Mir, Moscow, 1972. (Russian) MR 0349645
Reference: [2] P. V.  Danchev: Normed unit groups and direct factor problem for commutative modular group algebras.Math. Balkanica 10 (1996), 161–173. Zbl 0980.16500, MR 1606535
Reference: [3] P. V. Danchev: Topologically pure and basis subgroups in commutative group rings.Compt. Rend. Acad. Bulg. Sci. 48 (1995), 7–10. Zbl 0853.16040, MR 1405499
Reference: [4] P. V. Danchev: Subgroups of the basis subgroup in a modular group ring.(to appear). MR 2181782
Reference: [5] P. V. Danchev: Isomorphism of commutative modular group algebras.Serdica Math.  J. 23 (1997), 211–224. Zbl 0977.20003, MR 1661072
Reference: [6] L.  Fuchs: Infinite Abelian Groups I.Mir, Moscow, 1974. (Russian) MR 0346073
Reference: [7] P.  Hill: Concerning the number of basic subgroups.Acta Math. Hungar. 17 (1966), 267–269. Zbl 0139.25301, MR 0201507, 10.1007/BF01894873
Reference: [8] P. Hill: Units of commutative modular group algebras.J.  Pure and Appl. Algebra 94 (1994), 175–181. Zbl 0806.16033, MR 1282838, 10.1016/0022-4049(94)90031-0
Reference: [9] G.  Karpilovsky: Unit Groups of Group Rings.North-Holland, Amsterdam, 1989. Zbl 0687.16010, MR 1042757
Reference: [10] S. A. Khabbaz, E. A.  Walker: The number of basic subgroups of primary groups.Acta Math. Hungar. 15 (1964), 153–155. MR 0162849, 10.1007/BF01897031
Reference: [11] N. A.  Nachev: Basic subgroups of the group of normalized units in modular group rings.Houston J.  Math. 22 (1996), 225–232. MR 1402745
Reference: [12] N. A.  Nachev: Invariants of the Sylow $p$-subgroup of the unit group of commutative group ring of characteristic $p$.Compt. Rend. Acad. Bulg. Sci. 47 (1994), 9–12. MR 1319683
Reference: [13] N. A.  Nachev: Invariants of the Sylow $p$-subgroup of the unit group of a commutative group ring of characteristic $p$.Commun. in Algebra 23 (1995), 2469–2489. Zbl 0828.16037, MR 1330795, 10.1080/00927879508825355
.

Files

Files Size Format View
CzechMathJ_52-2002-1_12.pdf 370.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo