Previous |  Up |  Next

Article

Title: Cesàro wedge and weak Cesàro wedge $FK$-spaces (English)
Author: Ince, H. G.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 1
Year: 2002
Pages: 141-154
Summary lang: English
.
Category: math
.
Summary: In this paper we deal with Cesàro wedge and weak Cesàro wedge $FK$-spaces, and give several characterizations. Some applications of these spaces to general summability domains are also studied. (English)
Keyword: $FK$-space
Keyword: wedge $FK$-space
Keyword: weak wedge $FK$-space
Keyword: compact operator
Keyword: matrix mapping
MSC: 40C05
MSC: 46A35
MSC: 46A45
MSC: 47B37
idZBL: Zbl 0996.46004
idMR: MR1885463
.
Date available: 2009-09-24T10:49:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127708
.
Reference: [1] G.  Bennett: The Glinding Humps technique for $FK$-spaces.Trans. Amer. Math. Soc. 166 (1972), 285–292. MR 0296564
Reference: [2] G.  Bennett: A new class of sequence spaces with applications in summability theory.J.  Reine Angew. Math. 266 (1974), 49–75. Zbl 0277.46012, MR 0344846
Reference: [3] N.  Dunford and J. T. Schwartz: Linear Operators.Interscience Publishers, New York, 1958. MR 0117523
Reference: [4] G.  Goes and S. Goes: Sequences of bounded variation and sequences of Fourier coefficients. I.Math. Z. 118 (1970), 93–102. MR 0438019, 10.1007/BF01110177
Reference: [5] G.  Goes: Sequences of bounded variation and sequences of Fourier coefficients. II.J. Math. Anal. Appl. 39 (1972), 477–494. Zbl 0242.42006, MR 0447948, 10.1016/0022-247X(72)90218-1
Reference: [6] P. K.  Kamthan and M. Gupta: Sequence Spaces and Series.Marcel Dekker, New York, Basel, 1981. MR 0606740
Reference: [7] K. Knopp and G. G.  Lorentz: Beiträge zur absoluten Limitierung.Arch. Math. 2 (1949), 10–16. MR 0032790, 10.1007/BF02036747
Reference: [8] G.  Köthe: Topological Vector Spaces I.Springer-Verlag, New York, 1969. MR 0248498
Reference: [9] A. P.  Robertson and W. J.  Robertson: Topological Vector Spaces.University Press, Cambridge, 1964. MR 0162118
Reference: [10] A. K.  Snyder: An embedding property of sequence spaces related to Meyer-König and Zeller type theorems.Indiana Univ. Math. J. 35 (1986), 669–679. Zbl 0632.46007, MR 0855180, 10.1512/iumj.1986.35.35035
Reference: [11] A. K.  Snyder and A.  Wilansky: Inclusion theorems and semiconservative $FK$-spaces.Rocky Mountain J.  Math. 2 (1972), 595–603. MR 0310496, 10.1216/RMJ-1972-2-4-595
Reference: [12] A.  Wilansky: Functional Analysis.Blaisdell Press, New York-Toronto-London, 1964. Zbl 0136.10603, MR 0170186
Reference: [13] A.  Wilansky: Summability Through Functional Analysis.North Holland, Amsterdam-New York-Oxford, 1984. Zbl 0531.40008, MR 0738632
Reference: [14] K.  Zeller: Allgemeine Eigenschaften von Limitierungsverfahren.Math. Z. 53 (1951), 463–487. Zbl 0045.33403, MR 0039824, 10.1007/BF01175646
Reference: [15] K.  Zeller: Theorie der Limitierungsverfahren.Springer-Verlag, Berlin-Göttingen-Heidel-berg, 1958. Zbl 0085.04603, MR 0118990
.

Files

Files Size Format View
CzechMathJ_52-2002-1_13.pdf 375.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo