Title:
|
Cesàro wedge and weak Cesàro wedge $FK$-spaces (English) |
Author:
|
Ince, H. G. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
52 |
Issue:
|
1 |
Year:
|
2002 |
Pages:
|
141-154 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we deal with Cesàro wedge and weak Cesàro wedge $FK$-spaces, and give several characterizations. Some applications of these spaces to general summability domains are also studied. (English) |
Keyword:
|
$FK$-space |
Keyword:
|
wedge $FK$-space |
Keyword:
|
weak wedge $FK$-space |
Keyword:
|
compact operator |
Keyword:
|
matrix mapping |
MSC:
|
40C05 |
MSC:
|
46A35 |
MSC:
|
46A45 |
MSC:
|
47B37 |
idZBL:
|
Zbl 0996.46004 |
idMR:
|
MR1885463 |
. |
Date available:
|
2009-09-24T10:49:55Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127708 |
. |
Reference:
|
[1] G. Bennett: The Glinding Humps technique for $FK$-spaces.Trans. Amer. Math. Soc. 166 (1972), 285–292. MR 0296564 |
Reference:
|
[2] G. Bennett: A new class of sequence spaces with applications in summability theory.J. Reine Angew. Math. 266 (1974), 49–75. Zbl 0277.46012, MR 0344846 |
Reference:
|
[3] N. Dunford and J. T. Schwartz: Linear Operators.Interscience Publishers, New York, 1958. MR 0117523 |
Reference:
|
[4] G. Goes and S. Goes: Sequences of bounded variation and sequences of Fourier coefficients. I.Math. Z. 118 (1970), 93–102. MR 0438019, 10.1007/BF01110177 |
Reference:
|
[5] G. Goes: Sequences of bounded variation and sequences of Fourier coefficients. II.J. Math. Anal. Appl. 39 (1972), 477–494. Zbl 0242.42006, MR 0447948, 10.1016/0022-247X(72)90218-1 |
Reference:
|
[6] P. K. Kamthan and M. Gupta: Sequence Spaces and Series.Marcel Dekker, New York, Basel, 1981. MR 0606740 |
Reference:
|
[7] K. Knopp and G. G. Lorentz: Beiträge zur absoluten Limitierung.Arch. Math. 2 (1949), 10–16. MR 0032790, 10.1007/BF02036747 |
Reference:
|
[8] G. Köthe: Topological Vector Spaces I.Springer-Verlag, New York, 1969. MR 0248498 |
Reference:
|
[9] A. P. Robertson and W. J. Robertson: Topological Vector Spaces.University Press, Cambridge, 1964. MR 0162118 |
Reference:
|
[10] A. K. Snyder: An embedding property of sequence spaces related to Meyer-König and Zeller type theorems.Indiana Univ. Math. J. 35 (1986), 669–679. Zbl 0632.46007, MR 0855180, 10.1512/iumj.1986.35.35035 |
Reference:
|
[11] A. K. Snyder and A. Wilansky: Inclusion theorems and semiconservative $FK$-spaces.Rocky Mountain J. Math. 2 (1972), 595–603. MR 0310496, 10.1216/RMJ-1972-2-4-595 |
Reference:
|
[12] A. Wilansky: Functional Analysis.Blaisdell Press, New York-Toronto-London, 1964. Zbl 0136.10603, MR 0170186 |
Reference:
|
[13] A. Wilansky: Summability Through Functional Analysis.North Holland, Amsterdam-New York-Oxford, 1984. Zbl 0531.40008, MR 0738632 |
Reference:
|
[14] K. Zeller: Allgemeine Eigenschaften von Limitierungsverfahren.Math. Z. 53 (1951), 463–487. Zbl 0045.33403, MR 0039824, 10.1007/BF01175646 |
Reference:
|
[15] K. Zeller: Theorie der Limitierungsverfahren.Springer-Verlag, Berlin-Göttingen-Heidel-berg, 1958. Zbl 0085.04603, MR 0118990 |
. |