Previous |  Up |  Next

Article

Title: Symmetries in finite order variational sequences (English)
Author: Francaviglia, Mauro
Author: Palese, Marcella
Author: Vitolo, Raffaele
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 1
Year: 2002
Pages: 197-213
Summary lang: English
.
Category: math
.
Summary: We refer to Krupka’s variational sequence, i.e. the quotient of the de Rham sequence on a finite order jet space with respect to a ‘variationally trivial’ subsequence. Among the morphisms of the variational sequence there are the Euler-Lagrange operator and the Helmholtz operator. In this note we show that the Lie derivative operator passes to the quotient in the variational sequence. Then we define the variational Lie derivative as an operator on the sheaves of the variational sequence. Explicit representations of this operator give us some abstract versions of Noether’s theorems, which can be interpreted in terms of conserved currents for Lagrangians and Euler-Lagrange morphisms. (English)
Keyword: fibered manifold
Keyword: jet space
Keyword: variational sequence
Keyword: symmetries
Keyword: conservation laws
Keyword: Euler-Lagrange morphism
Keyword: Helmholtz morphism
MSC: 58A12
MSC: 58A20
MSC: 58E30
MSC: 58J10
MSC: 70S05
idZBL: Zbl 1006.58014
idMR: MR1885465
.
Date available: 2009-09-24T10:50:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127710
.
Reference: [AnDu80] I. M. Anderson and T. Duchamp: On the existence of global variational principles.Amer. Math. J. 102 (1980), 781–868. MR 0590637, 10.2307/2374195
Reference: [FFP98] L. Fatibene, M. Francaviglia and M. Palese: Conservation laws and variational sequences in gauge-natural theories.Math. Proc. Cambridge Phil. Soc. 130 (2001), 555–569. MR 1816809, 10.1017/S0305004101004881
Reference: [Fe84] M. Ferraris: Fibered connections and global Poincaré-Cartan forms in higher-order calculus of variations.Proc. Diff. Geom. and its Appl. (Nové Město na Moravě, 1983), D. Krupka (ed.), J. E. Purkyně University, Brno, 1984, pp. 61–91. Zbl 0564.53013, MR 0793200
Reference: [FeFr91] M. Ferraris and M. Francaviglia: The Lagrangian approach to conserved quantities in general relativity.Mechanics, Analysis and Geometry: 200 Years after Lagrange, M. Francaviglia (ed.), Elsevier Science Publishers B. V., Amsterdam, 1991, pp. 451–488. MR 1098527
Reference: [FPV98] M. Francaviglia, M. Palese and R. Vitolo: Superpotentials in variational sequences.Proc. VII Conf. Diff. Geom. and Appl., Satellite Conf. of ICM in Berlin (Brno 1998), I.  Kolář et al. (eds.), Masaryk University, Brno, 1999, pp. 469–480. MR 1708936
Reference: [GaMu82] P. L. Garcia and J. Muñoz: On the geometrical structure of higher order variational calculus.Proc. IUTAM-ISIMM Symp. on Modern Developments in Anal. Mech. (Torino, 1982), S. Benenti, M. Francaviglia and A. Lichnerowicz (eds.), Tecnoprint, Bologna, 1983, pp. 127–147. MR 0773483
Reference: [KMS93] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry.Springer-Verlag, New York, 1993. MR 1202431
Reference: [Kol80] I. Kolář: Lie derivatives and higher order Lagrangians.Proc. Diff. Geom. and its Appl. (Nové Město na Moravě, 1980), O. Kowalski (ed.), Univerzita Karlova, Praha, 1981, pp. 117–123. MR 0663219
Reference: [Kol83] I. Kolář: A geometrical version of the higher order hamilton formalism in fibred manifolds.J. Geom. Phys. 1 (1984), 127–137. MR 0794983, 10.1016/0393-0440(84)90007-X
Reference: [Kru73] D. Krupka: Some geometric aspects of variational problems in fibred manifolds.Folia Fac. Sci. Nat. UJEP Brunensis 14, J. E. Purkyně Univ., Brno (1973), 1–65.
Reference: [Kru90] D. Krupka: Variational sequences on finite order jet spaces.Proc. Diff. Geom. and its Appl. (Brno, Czech Republic, 1989), J. Janyška, D. Krupka (eds.), World Scientific, Singapore, 1990, pp. 236–254. Zbl 0813.58014, MR 1062026
Reference: [Kru93] D. Krupka: Topics in the calculus of variations: Finite order variational sequences.Proc. Diff. Geom. and its Appl, Opava, 1993, pp. 473–495. Zbl 0811.58018, MR 1255563
Reference: [KrTr74] D. Krupka and A. Trautman: General invariance of Lagrangian structures.Bull. Acad. Polon. Sci., Math. Astr. Phys. 22 (1974), 207–211. MR 0345130
Reference: [MaMo83a] L. Mangiarotti and M. Modugno: Fibered spaces, jet spaces and connections for field theories.Proc. Int. Meet. on Geom. and Phys., Pitagora Editrice, Bologna, 1983, pp. 135–165. MR 0760841
Reference: [Nov74] J. Novotný: Modern methods of differential geometry and the conservation laws problem;.Folia Fac. Sci. Nat. UJEP Brunensis (Physica) 19 (1974), 1–55.
Reference: [Sau89] D. J. Saunders: The Geometry of Jet Bundles.Cambridge Univ. Press, Cambridge, 1989. Zbl 0665.58002, MR 0989588
Reference: [Tak79] F. Takens: A global version of the inverse problem of the calculus of variations.J. Diff. Geom. 14 (1979), 543–562. Zbl 0463.58015, MR 0600611, 10.4310/jdg/1214435235
Reference: [Tra67] A. Trautman: Noether equations and conservation laws.Comm. Math. Phys. 6 (1967), 248–261. Zbl 0172.27803, MR 0220470, 10.1007/BF01646018
Reference: [Tra96] A. Trautman: A metaphysical remark on variational principles.Acta Phys. Pol. B 27 (1996), 839–848. Zbl 0966.58503, MR 1388335
Reference: [Tul77] W. M. Tulczyjew: The Lagrange complex.Bull. Soc. Math. France 105 (1977), 419–431. Zbl 0408.58020, MR 0494272, 10.24033/bsmf.1860
Reference: [Vin77] A.  M. Vinogradov: On the algebro-geometric foundations of Lagrangian field theory.Soviet Math. Dokl. 18 (1977), 1200–1204. Zbl 0403.58005
Reference: [Vin78] A. M. Vinogradov: A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory with constraints.Soviet Math. Dokl. 19 (1978), 144–148.
Reference: [Vit97] R. Vitolo: On different geometric formulations of Lagrangian formalism.Diff. Geom. and its Appl. 10 (1999), 225–255. Zbl 0930.58001, MR 1692446, 10.1016/S0926-2245(99)00011-X
Reference: [Vit98] R. Vitolo: Finite order Lagrangian bicomplexes.Math. Proc. Cambridge Phil. Soc. 125 (1998), 321–333. MR 1643802, 10.1017/S0305004198002837
Reference: [Vit98b] R. Vitolo: A new infinite order formulation of variational sequences.Arch. Math. Univ. Brunensis 34 (1998), 483–504. Zbl 0970.58002, MR 1679643
Reference: [Wel80] R. O. Wells: Differential Analysis on Complex Manifolds (GTM, n. 65).Springer-Verlag, Berlin, 1980. MR 0608414
.

Files

Files Size Format View
CzechMathJ_52-2002-1_15.pdf 451.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo