Previous |  Up |  Next

Article

Title: On the Stieltjes moment problem on semigroups (English)
Author: Bisgaard, Torben Maack
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 1
Year: 2002
Pages: 155-196
Summary lang: English
.
Category: math
.
Summary: We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters). (English)
Keyword: semigroup
Keyword: abelian
Keyword: commutative
Keyword: finitely generated
Keyword: positive definite
Keyword: completely positive definite
Keyword: character
MSC: 43A05
MSC: 43A35
MSC: 44A60
idZBL: Zbl 1021.43003
idMR: MR1885464
.
Date available: 2009-09-24T10:50:03Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127709
.
Reference: [1] N. I.  Akhiezer: The Classical Moment Problem.Oliver and Boyd, Edinburgh, 1965. Zbl 0173.41001
Reference: [2] C.  Berg: Positive definite and related functions on semigroups.In: The Analytical and Topological Theory of Semigroups, K. H.  Hofmann, J. D.  Lawson and J. S.  Pym (eds.), Walter de Gruyter &  Co., Berlin, 1990. Zbl 0722.43005, MR 1072791
Reference: [3] C.  Berg, J. P. R.  Christensen and C. U.  Jensen: A remark on the multidimensional moment problem.Math. Ann. 243 (1979), 163–169. MR 0543726, 10.1007/BF01420423
Reference: [4] C.  Berg, J. P. R.  Christensen and P.  Ressel: Harmonic Analysis on Semigroups.Springer-Verlag, Berlin, 1984. MR 0747302
Reference: [5] T. M.  Bisgaard: Extension of characters on $*$-semigroups.Math. Ann. 282 (1988), 251–258. MR 0963015, 10.1007/BF01456974
Reference: [6] T. M.  Bisgaard: Separation by characters or positive definite functions.Semigroup Forum 53 (1996), 317–320. Zbl 0867.43002, MR 1406777, 10.1007/BF02574146
Reference: [7] T. M.  Bisgaard: Semigroups of moment functions.Ark. Mat. 35 (1997), 127–156. Zbl 0886.43006, MR 1443038, 10.1007/BF02559595
Reference: [8] T. M.  Bisgaard: On perfect semigroups.Acta Math. Hung. 79 (1998), 269–294. Zbl 0909.20047, MR 1619811, 10.1023/A:1006511012031
Reference: [9] T. M.  Bisgaard: Extensions of Hamburger’s Theorem.Semigroup Forum 57 (1998), 397–429. Zbl 0923.47010, MR 1640879, 10.1007/PL00005988
Reference: [10] T. M.  Bisgaard: A method of moments for semigroups  $S$ without zero, but satisfying $S=S+S$.Semigroup Forum 61 (2000), 317–332. Zbl 0967.43001, MR 1832308, 10.1007/PL00006030
Reference: [11] T. M.  Bisgaard: Semiperfect countable $C$-finite semigroups satisfying $S=S+S$.Math. Ann. 315 (1999), 141–168. MR 1717546, 10.1007/s002080050320
Reference: [12] T. M.  Bisgaard and P.  Ressel: Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups.Math.  Z. 200 (1989), 511–525. MR 0987584
Reference: [13] A.  Brøndsted: An Introduction to Convex Polytopes.Springer-Verlag, Berlin, 1983. MR 0683612
Reference: [14] A. H.  Clifford and G. B.  Preston: The Algebraic Theory of Semigroups.American Mathematical Society, Providence, 1961. MR 0132791
Reference: [15] D.  Hilbert: Über die Darstellung definiter Formen als Summe von Formenquadraten.Math. Ann. 32 (1888), 342–350. MR 1510517, 10.1007/BF01443605
Reference: [16] W. B.  Jones, O.  Njåstad and W. J.  Thron: Orthogonal Laurent polynomials and the strong Hamburger moment problem.J.  Math. Anal. Appl. 98 (1984), 528–554. MR 0730525, 10.1016/0022-247X(84)90267-1
Reference: [17] S. L.  Lauritzen: Extremal Families and Systems of Sufficient Statistics.Springer-Verlag, Berlin, 1988. Zbl 0681.62009, MR 0971253
Reference: [18] A. W.  Marshall and I.  Olkin: Inequalities: Theory of Majorization and its Applications.Academic Press, New York, 1979. MR 0552278
Reference: [19] N.  Sakakibara: Moment problems on subsemigroups of $N_0^k$ and $Z^k$.Semigroup Forum 45 (1992), 241–248. MR 1171848, 10.1007/BF03025764
Reference: [20] K.  Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional.Math. Nachr. 88 (1979), 385–390. MR 0543417, 10.1002/mana.19790880130
Reference: [21] T. J.  Stieltjes: Recherches sur les fractions continues.Ann. Fac. Sci. Toulouse Math. 8 (1894), 1–122. MR 1508159, 10.5802/afst.108
.

Files

Files Size Format View
CzechMathJ_52-2002-1_14.pdf 641.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo