Title:
|
On the Stieltjes moment problem on semigroups (English) |
Author:
|
Bisgaard, Torben Maack |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
52 |
Issue:
|
1 |
Year:
|
2002 |
Pages:
|
155-196 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters). (English) |
Keyword:
|
semigroup |
Keyword:
|
abelian |
Keyword:
|
commutative |
Keyword:
|
finitely generated |
Keyword:
|
positive definite |
Keyword:
|
completely positive definite |
Keyword:
|
character |
MSC:
|
43A05 |
MSC:
|
43A35 |
MSC:
|
44A60 |
idZBL:
|
Zbl 1021.43003 |
idMR:
|
MR1885464 |
. |
Date available:
|
2009-09-24T10:50:03Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127709 |
. |
Reference:
|
[1] N. I. Akhiezer: The Classical Moment Problem.Oliver and Boyd, Edinburgh, 1965. Zbl 0173.41001 |
Reference:
|
[2] C. Berg: Positive definite and related functions on semigroups.In: The Analytical and Topological Theory of Semigroups, K. H. Hofmann, J. D. Lawson and J. S. Pym (eds.), Walter de Gruyter & Co., Berlin, 1990. Zbl 0722.43005, MR 1072791 |
Reference:
|
[3] C. Berg, J. P. R. Christensen and C. U. Jensen: A remark on the multidimensional moment problem.Math. Ann. 243 (1979), 163–169. MR 0543726, 10.1007/BF01420423 |
Reference:
|
[4] C. Berg, J. P. R. Christensen and P. Ressel: Harmonic Analysis on Semigroups.Springer-Verlag, Berlin, 1984. MR 0747302 |
Reference:
|
[5] T. M. Bisgaard: Extension of characters on $*$-semigroups.Math. Ann. 282 (1988), 251–258. MR 0963015, 10.1007/BF01456974 |
Reference:
|
[6] T. M. Bisgaard: Separation by characters or positive definite functions.Semigroup Forum 53 (1996), 317–320. Zbl 0867.43002, MR 1406777, 10.1007/BF02574146 |
Reference:
|
[7] T. M. Bisgaard: Semigroups of moment functions.Ark. Mat. 35 (1997), 127–156. Zbl 0886.43006, MR 1443038, 10.1007/BF02559595 |
Reference:
|
[8] T. M. Bisgaard: On perfect semigroups.Acta Math. Hung. 79 (1998), 269–294. Zbl 0909.20047, MR 1619811, 10.1023/A:1006511012031 |
Reference:
|
[9] T. M. Bisgaard: Extensions of Hamburger’s Theorem.Semigroup Forum 57 (1998), 397–429. Zbl 0923.47010, MR 1640879, 10.1007/PL00005988 |
Reference:
|
[10] T. M. Bisgaard: A method of moments for semigroups $S$ without zero, but satisfying $S=S+S$.Semigroup Forum 61 (2000), 317–332. Zbl 0967.43001, MR 1832308, 10.1007/PL00006030 |
Reference:
|
[11] T. M. Bisgaard: Semiperfect countable $C$-finite semigroups satisfying $S=S+S$.Math. Ann. 315 (1999), 141–168. MR 1717546, 10.1007/s002080050320 |
Reference:
|
[12] T. M. Bisgaard and P. Ressel: Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups.Math. Z. 200 (1989), 511–525. MR 0987584 |
Reference:
|
[13] A. Brøndsted: An Introduction to Convex Polytopes.Springer-Verlag, Berlin, 1983. MR 0683612 |
Reference:
|
[14] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups.American Mathematical Society, Providence, 1961. MR 0132791 |
Reference:
|
[15] D. Hilbert: Über die Darstellung definiter Formen als Summe von Formenquadraten.Math. Ann. 32 (1888), 342–350. MR 1510517, 10.1007/BF01443605 |
Reference:
|
[16] W. B. Jones, O. Njåstad and W. J. Thron: Orthogonal Laurent polynomials and the strong Hamburger moment problem.J. Math. Anal. Appl. 98 (1984), 528–554. MR 0730525, 10.1016/0022-247X(84)90267-1 |
Reference:
|
[17] S. L. Lauritzen: Extremal Families and Systems of Sufficient Statistics.Springer-Verlag, Berlin, 1988. Zbl 0681.62009, MR 0971253 |
Reference:
|
[18] A. W. Marshall and I. Olkin: Inequalities: Theory of Majorization and its Applications.Academic Press, New York, 1979. MR 0552278 |
Reference:
|
[19] N. Sakakibara: Moment problems on subsemigroups of $N_0^k$ and $Z^k$.Semigroup Forum 45 (1992), 241–248. MR 1171848, 10.1007/BF03025764 |
Reference:
|
[20] K. Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional.Math. Nachr. 88 (1979), 385–390. MR 0543417, 10.1002/mana.19790880130 |
Reference:
|
[21] T. J. Stieltjes: Recherches sur les fractions continues.Ann. Fac. Sci. Toulouse Math. 8 (1894), 1–122. MR 1508159, 10.5802/afst.108 |
. |