Previous |  Up |  Next

Article

Title: Extremal metrics and modulus (English)
Author: Anić, I.
Author: Mateljević, M.
Author: Šarić, D.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 2
Year: 2002
Pages: 225-235
Summary lang: English
.
Category: math
.
Summary: We give a new proof of Beurling’s result related to the equality of the extremal length and the Dirichlet integral of solution of a mixed Dirichlet-Neuman problem. Our approach is influenced by Gehring’s work in $\mathbb{R}^3$ space. Also, some generalizations of Gehring’s result are presented. (English)
Keyword: extremal distance
Keyword: conformal capacity
Keyword: Beurling theorem
MSC: 30A15
MSC: 30C85
idZBL: Zbl 1014.30015
idMR: MR1905432
.
Date available: 2009-09-24T10:50:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127713
.
Reference: [ahl] L. V. Ahlfors: Conformal Invariants.McGraw-Hill Book Company, 1973. Zbl 0272.30012, MR 0357743
Reference: [geh1] F. W. Gehring: Rings and quasiconformal mappings in space.Trans. Amer. Math. Soc. 103 (1962), 383–393. Zbl 0113.05805, MR 0139735, 10.1090/S0002-9947-1962-0139735-8
Reference: [geh3] F. W. Gehring: Quasiconformal mappings in space.Bull. Amer. Math. Soc. 69 (1963). Zbl 0136.38102, MR 0145071, 10.1090/S0002-9904-1963-10902-7
Reference: [zie] W. P. Ziemer: Extremal lenght and $p$-capacity.Michigan Math. J. 16 (1969), 43–51. MR 0247077, 10.1307/mmj/1029000164
Reference: [streb] K. Strebel: Quadratic Differentials.Springer-Verlag, 1984. Zbl 0547.30038, MR 0743423
Reference: [cour] R. Courant: Dirichlet’s Principle, Conformal Mappings and Minimal Surfaces.New York, Interscience Publishers, Inc., 1950. MR 0036317
Reference: [gar] F. P. Gardiner: Teichmüller Theory and Quadratic Differentials.New York, A Wiley-Interscience Publication, 1987. Zbl 0629.30002, MR 0903027
Reference: [tub] M. Berger, B. Gostiaux: Differential Geometry: Manifolds, Curves and Surfaces.Springer-Verlag, 1987. MR 0903026
Reference: [vai] J.Väisälä: On quasiconformal mappings in space.Ann. Acad. Sci. Fenn. Ser. A 298 (1961), 1–36. Zbl 0096.27506, MR 0140685
Reference: [low] C. Loewner: On the conformal capacity in space.J. Math. Mech. 8 (1959), 411–414. Zbl 0086.28203, MR 0104785
.

Files

Files Size Format View
CzechMathJ_52-2002-2_1.pdf 361.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo