Previous |  Up |  Next

Article

Title: Almost periodic compactifications of group extensions (English)
Author: Junghenn, H. D.
Author: Milnes, P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 2
Year: 2002
Pages: 237-254
Summary lang: English
.
Category: math
.
Summary: Let $N$ and $K$ be groups and let $G$ be an extension of $N$ by $K$. Given a property $\mathcal P$ of group compactifications, one can ask whether there exist compactifications $N^{\prime }$ and $K^{\prime }$ of $N$ and $K$ such that the universal $\mathcal P$-compactification of $G$ is canonically isomorphic to an extension of $N^{\prime }$ by $K^{\prime }$. We prove a theorem which gives necessary and sufficient conditions for this to occur for general properties $\mathcal P$ and then apply this result to the almost periodic and weakly almost periodic compactifications of $G$. (English)
Keyword: group extension
Keyword: semidirect product
Keyword: topological group
Keyword: semitopological semigroup
Keyword: right topological semigroup
Keyword: compactification
Keyword: almost periodic
Keyword: weakly almost periodic
Keyword: strongly almost periodic
MSC: 22A20
MSC: 22D05
MSC: 43A60
idZBL: Zbl 1011.22001
idMR: MR1905433
.
Date available: 2009-09-24T10:50:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127714
.
Reference: [1] J. F.  Berglund, H. D.  Junghenn and P.  Milnes: Analysis on Semigroups: Function Spaces, Compactifications, Representations.Wiley, New York, 1989. MR 0999922
Reference: [2] K.  de  Leeuw and I.  Glicksberg: Almost periodic functions on semigroups.Acta Math. 105 (1961), 99–140. MR 0131785, 10.1007/BF02559536
Reference: [3] H. D.  Junghenn and B.  Lerner: Semigroup compactifications of semidirect products.Trans. Amer. Math. Soc. 265 (1981), 393–404. MR 0610956, 10.1090/S0002-9947-1981-0610956-2
Reference: [4] H. D.  Junghenn and P.  Milnes: Distal compactifications of group extensions.Rocky Mountain Math.  J. 29 (1999), 209–227. MR 1687663, 10.1216/rmjm/1181071687
Reference: [5] M.  Landstad: On the Bohr compactification of a transformation group.Math.  Z. 127 (1972), 167–178. Zbl 0236.54030, MR 0310853, 10.1007/BF01112609
Reference: [6] A. T.  Lau, P.  Milnes and J. S.  Pym: Compactifications of locally compact groups and quotients.Math. Proc. Camb. Phil. Soc. 116 (1994), 451–463. MR 1291752, 10.1017/S030500410007273X
Reference: [7] P.  Milnes: Almost periodic compactifications of direct and semidirect products.Coll. Math. 44 (1981), 125–136. Zbl 0482.43005, MR 0633106, 10.4064/cm-44-1-125-136
Reference: [8] M.  Rieffel: $C^{\star }$-algebras associated with irrational rotation algebras.Pacific J.  Math. 93 (1981), 415–429. Zbl 0499.46039, MR 0623572, 10.2140/pjm.1981.93.415
Reference: [9] O.  Schreier: Über die Erweiterung von Gruppen I.Monatsh. Math. Phys. 34 (1926), 165–180. MR 1549403, 10.1007/BF01694897
Reference: [10] W.  R.  Scott: Group Theory.Prentice Hall, Englewood Cliffs, N.  J., 1964. Zbl 0126.04504, MR 0167513
.

Files

Files Size Format View
CzechMathJ_52-2002-2_2.pdf 438.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo