Previous |  Up |  Next

Article

Title: A class of torsion-free abelian groups characterized by the ranks of their socles (English)
Author: Albrecht, Ulrich
Author: Giovannitti, Tony
Author: Goeters, Pat
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 2
Year: 2002
Pages: 319-327
Summary lang: English
.
Category: math
.
Summary: Butler groups formed by factoring a completely decomposable group by a rank one group have been studied extensively. We call such groups, bracket groups. We study bracket modules over integral domains. In particular, we are interested in when any bracket $R$-module is $R$ tensor a bracket group. (English)
Keyword: Dedekind domain
MSC: 13A15
MSC: 13B22
MSC: 13C13
MSC: 13F05
MSC: 13G05
MSC: 20K15
idZBL: Zbl 1013.13007
idMR: MR1905438
.
Date available: 2009-09-24T10:51:12Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127719
.
Reference: [1] D. A. Arnold: Finite Rank Torsion-Free Abelian Groups and Rings, LNM 931.Springer-Verlag, 1982. MR 0665251
Reference: [2] D. M. Arnold and C. I. Vinsonhaler: Finite rank Butler groups, a survey of recent results.In: Abelian Groups. Lecture Notes in Pure and Appl. Math. 146, Marcel Dekker, 1993, pp. 17–42. MR 1217256
Reference: [3] U. F. Albrecht and H. P.  Goeters: Butler theory over Murley groups.J. Algebra 200 (1998), 118–133. MR 1603266, 10.1006/jabr.1997.7211
Reference: [4] L. Fuchs and C.  Metelli: On a class of Butler groups.Manuscripta Math. 71 (1991), 1–28. MR 1094735, 10.1007/BF02568390
Reference: [5] H. P. Goeters: An extension of Warfield duality for abelian groups.J.  Algebra 180 (1996), 848–861. Zbl 0845.20042, MR 1379213, 10.1006/jabr.1996.0097
Reference: [6] H. P.  Goeters and Ch.  Megibben: Quasi-isomorphism invariants and ${\mathbb{Z}}_2$-representations for a class of Butler groups.Rendiconte Sem. Mat. Univ. of Padova (to appear).
Reference: [7] H. P. Goeters, W.  Ullery and Ch. Vinsonhaler: Numerical invariants for a class of Butler groups.Contemp. Math. 171 (1994), 159–172. MR 1293140, 10.1090/conm/171/01771
Reference: [8] P. Hill and C.  Megibben: The classification of certain Butler groups.J.  of Algebra 160 (2) (1993), 524–551. MR 1244926, 10.1006/jabr.1993.1199
Reference: [9] W. Y. Lee: Codiagonal Butler groups.Chinese J.  Math. 17 (1989), 259–271. MR 1036105
Reference: [10] E. Matlis: Torsion-Free Modules.University of Chicago Press, 1972. Zbl 0298.13001, MR 0344237
Reference: [11] H. Matsumura: Commutative Ring Theory.Cambridge University Press, 1980. MR 0879273
Reference: [12] F. Richman: An extension of the theory of completely decomposable torsion-free abelian groups.Trans. Amer. Math. Soc. 279 (1983), 175–185. Zbl 0524.20028, MR 0704608, 10.1090/S0002-9947-1983-0704608-X
Reference: [13] J. J. Rotman: An Introduction to Homological Algebra.Academic Press, 1979. Zbl 0441.18018, MR 0538169
Reference: [14] R. B. Warfield: Homomorphisms and duality for abelian groups.Math. Z. 107 (1968), 189–212. MR 0237642, 10.1007/BF01110257
.

Files

Files Size Format View
CzechMathJ_52-2002-2_7.pdf 359.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo