Title:
|
A class of torsion-free abelian groups characterized by the ranks of their socles (English) |
Author:
|
Albrecht, Ulrich |
Author:
|
Giovannitti, Tony |
Author:
|
Goeters, Pat |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
52 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
319-327 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Butler groups formed by factoring a completely decomposable group by a rank one group have been studied extensively. We call such groups, bracket groups. We study bracket modules over integral domains. In particular, we are interested in when any bracket $R$-module is $R$ tensor a bracket group. (English) |
Keyword:
|
Dedekind domain |
MSC:
|
13A15 |
MSC:
|
13B22 |
MSC:
|
13C13 |
MSC:
|
13F05 |
MSC:
|
13G05 |
MSC:
|
20K15 |
idZBL:
|
Zbl 1013.13007 |
idMR:
|
MR1905438 |
. |
Date available:
|
2009-09-24T10:51:12Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127719 |
. |
Reference:
|
[1] D. A. Arnold: Finite Rank Torsion-Free Abelian Groups and Rings, LNM 931.Springer-Verlag, 1982. MR 0665251 |
Reference:
|
[2] D. M. Arnold and C. I. Vinsonhaler: Finite rank Butler groups, a survey of recent results.In: Abelian Groups. Lecture Notes in Pure and Appl. Math. 146, Marcel Dekker, 1993, pp. 17–42. MR 1217256 |
Reference:
|
[3] U. F. Albrecht and H. P. Goeters: Butler theory over Murley groups.J. Algebra 200 (1998), 118–133. MR 1603266, 10.1006/jabr.1997.7211 |
Reference:
|
[4] L. Fuchs and C. Metelli: On a class of Butler groups.Manuscripta Math. 71 (1991), 1–28. MR 1094735, 10.1007/BF02568390 |
Reference:
|
[5] H. P. Goeters: An extension of Warfield duality for abelian groups.J. Algebra 180 (1996), 848–861. Zbl 0845.20042, MR 1379213, 10.1006/jabr.1996.0097 |
Reference:
|
[6] H. P. Goeters and Ch. Megibben: Quasi-isomorphism invariants and ${\mathbb{Z}}_2$-representations for a class of Butler groups.Rendiconte Sem. Mat. Univ. of Padova (to appear). |
Reference:
|
[7] H. P. Goeters, W. Ullery and Ch. Vinsonhaler: Numerical invariants for a class of Butler groups.Contemp. Math. 171 (1994), 159–172. MR 1293140, 10.1090/conm/171/01771 |
Reference:
|
[8] P. Hill and C. Megibben: The classification of certain Butler groups.J. of Algebra 160 (2) (1993), 524–551. MR 1244926, 10.1006/jabr.1993.1199 |
Reference:
|
[9] W. Y. Lee: Codiagonal Butler groups.Chinese J. Math. 17 (1989), 259–271. MR 1036105 |
Reference:
|
[10] E. Matlis: Torsion-Free Modules.University of Chicago Press, 1972. Zbl 0298.13001, MR 0344237 |
Reference:
|
[11] H. Matsumura: Commutative Ring Theory.Cambridge University Press, 1980. MR 0879273 |
Reference:
|
[12] F. Richman: An extension of the theory of completely decomposable torsion-free abelian groups.Trans. Amer. Math. Soc. 279 (1983), 175–185. Zbl 0524.20028, MR 0704608, 10.1090/S0002-9947-1983-0704608-X |
Reference:
|
[13] J. J. Rotman: An Introduction to Homological Algebra.Academic Press, 1979. Zbl 0441.18018, MR 0538169 |
Reference:
|
[14] R. B. Warfield: Homomorphisms and duality for abelian groups.Math. Z. 107 (1968), 189–212. MR 0237642, 10.1007/BF01110257 |
. |