Previous |  Up |  Next

Article

Keywords:
automorphism; commutativity; local ring; polynomial identity; $s$-unital ring
Summary:
Let $p$, $ q$ and $r$ be fixed non-negative integers. In this note, it is shown that if $R$ is left (right) $s$-unital ring satisfying $[f(x^py^q) - x^ry, x] = 0$ ($[f(x^py^q) - yx^r, x] = 0$, respectively) where $f(\lambda ) \in {\lambda }^2{\mathbb Z}[\lambda ]$, then $R$ is commutative. Moreover, commutativity of $R$ is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results.
References:
[1] H. A. S. Abujabal and M. A. Khan: Commutativity for a certain class of rings. Georgian Math.  J. 5 (1998), 301–314. DOI 10.1023/A:1022197800695 | MR 1639061
[2] H. A. S.  Abujabal, M. A. Khan and M. S.  Khan: A commutativity theorem for one sided $s$-unital rings. Pure Math. Appl. 1 (1990), 109–116. MR 1095008
[3] H. E. Bell, M. A. Quadri and M. A. Khan: Two commutativity theorems for rings. Rad. Mat. 3 (1987), 255–260. MR 0931981
[4] H. E. Bell: On the power map and ring commutativity. Canad. Math. Bull. 21 (1978), 399–404. DOI 10.4153/CMB-1978-070-x | MR 0523579 | Zbl 0403.16024
[5] H. E.  Bell: On some commutativity theorems of Herstein. Arch. Math. 24 (1973), 34-38. DOI 10.1007/BF01228168 | MR 0320090 | Zbl 0251.16021
[6] I. N.  Herstein: Power maps in rings. Michigan Math.  J. 8 (1961), 29–32. DOI 10.1307/mmj/1028998511 | MR 0118741 | Zbl 0096.25701
[7] I. N.  Herstein: Two remarks on commutativity of rings. Canad. J.  Math. 7 (1955), 411–412. DOI 10.4153/CJM-1955-044-2 | MR 0071405
[8] Y. Hirano, Y.  Kobayashi and H. Tominaga: Some polynomial identities and commutativity of $s$-unital rings. Math. J.  Okayama Univ. 24 (1982), 7–13. MR 0660049
[9] N. Jacobson: Structure of Rings. Amer. Math. Soc. Colloq. Publ., Providence, 1956. MR 0081264 | Zbl 0073.02002
[10] T. P. Kezlan: A note on commutativity of semiprime PI-rings. Math. Japon. 27 (1982), 267–268. MR 0655230 | Zbl 0481.16013
[11] M. A.  Khan: Commutativity of rings through a Streb’s result. Czecholoslovak Math. J. 50 (2000), 791–801. DOI 10.1023/A:1022464612374 | MR 1792970 | Zbl 1079.16504
[12] H. Komatsu, T. Nishinaka and H. Tominaga: On commutativity of rings. Rad. Mat. 6 (1990), 303–311. MR 1096712
[13] H. Komatsu and H. Tominaga: Chacron’s condition and commutativity theorems. Math. J. Okayama Univ. 31 (1989), 101–120. MR 1043353
[14] H. Komatsu: Some commutativity theorems for left $s$-unital rings. Resultate der Math. 15 (1989), 335–342. DOI 10.1007/BF03322621 | MR 0997069 | Zbl 0678.16027
[15] W. K. Nicholson and A. Yaqub: A commutativity theorem for rings and groups. Canad. Math. Bull. 22 (1979), 419–423. DOI 10.4153/CMB-1979-055-9 | MR 0563755
[16] E. Psomopoulos: A commutativity theorem for rings. Math. Japon. 29 (1984), 371–373. MR 0752233 | Zbl 0548.16029
[17] M. S. Puctha and A. Yaqub: Rings satisfying polynomial constraints. J. Math. Soc. Japan 25 (1973), 115–124. MR 0313312
[18] W.  Streb: Zur Struktur nichtkommutativer Ringe. Math. J.  Okayama Univ. 31 (1989), 135–140. MR 1043356 | Zbl 0702.16022
[19] W. Streb: Über einen Satz von Herstein und Nakayama. Rend. Sem. Mat. Univ. Podova 64 (1981), 151–171. MR 0636633 | Zbl 0474.16024
Partner of
EuDML logo