Previous |  Up |  Next

Article

Title: Commutativity of rings with polynomial constraints (English)
Author: Khan, Moharram A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 2
Year: 2002
Pages: 401-413
Summary lang: English
.
Category: math
.
Summary: Let $p$, $ q$ and $r$ be fixed non-negative integers. In this note, it is shown that if $R$ is left (right) $s$-unital ring satisfying $[f(x^py^q) - x^ry, x] = 0$ ($[f(x^py^q) - yx^r, x] = 0$, respectively) where $f(\lambda ) \in {\lambda }^2{\mathbb Z}[\lambda ]$, then $R$ is commutative. Moreover, commutativity of $R$ is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results. (English)
Keyword: automorphism
Keyword: commutativity
Keyword: local ring
Keyword: polynomial identity
Keyword: $s$-unital ring
MSC: 16R50
MSC: 16U70
MSC: 16U80
MSC: 16U99
idZBL: Zbl 1014.16032
idMR: MR1905447
.
Date available: 2009-09-24T10:52:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127728
.
Reference: [1] H. A. S. Abujabal and M. A. Khan: Commutativity for a certain class of rings.Georgian Math.  J. 5 (1998), 301–314. MR 1639061, 10.1023/A:1022197800695
Reference: [2] H. A. S.  Abujabal, M. A. Khan and M. S.  Khan: A commutativity theorem for one sided $s$-unital rings.Pure Math. Appl. 1 (1990), 109–116. MR 1095008
Reference: [3] H. E. Bell, M. A. Quadri and M. A. Khan: Two commutativity theorems for rings.Rad. Mat. 3 (1987), 255–260. MR 0931981
Reference: [4] H. E. Bell: On the power map and ring commutativity.Canad. Math. Bull. 21 (1978), 399–404. Zbl 0403.16024, MR 0523579, 10.4153/CMB-1978-070-x
Reference: [5] H. E.  Bell: On some commutativity theorems of Herstein.Arch. Math. 24 (1973), 34-38. Zbl 0251.16021, MR 0320090, 10.1007/BF01228168
Reference: [6] I. N.  Herstein: Power maps in rings.Michigan Math.  J. 8 (1961), 29–32. Zbl 0096.25701, MR 0118741, 10.1307/mmj/1028998511
Reference: [7] I. N.  Herstein: Two remarks on commutativity of rings.Canad. J.  Math. 7 (1955), 411–412. MR 0071405, 10.4153/CJM-1955-044-2
Reference: [8] Y. Hirano, Y.  Kobayashi and H. Tominaga: Some polynomial identities and commutativity of $s$-unital rings.Math. J.  Okayama Univ. 24 (1982), 7–13. MR 0660049
Reference: [9] N. Jacobson: Structure of Rings.Amer. Math. Soc. Colloq. Publ., Providence, 1956. Zbl 0073.02002, MR 0081264
Reference: [10] T. P. Kezlan: A note on commutativity of semiprime PI-rings.Math. Japon. 27 (1982), 267–268. Zbl 0481.16013, MR 0655230
Reference: [11] M. A.  Khan: Commutativity of rings through a Streb’s result.Czecholoslovak Math. J. 50 (2000), 791–801. Zbl 1079.16504, MR 1792970, 10.1023/A:1022464612374
Reference: [12] H. Komatsu, T. Nishinaka and H. Tominaga: On commutativity of rings.Rad. Mat. 6 (1990), 303–311. MR 1096712
Reference: [13] H. Komatsu and H. Tominaga: Chacron’s condition and commutativity theorems.Math. J. Okayama Univ. 31 (1989), 101–120. MR 1043353
Reference: [14] H. Komatsu: Some commutativity theorems for left $s$-unital rings.Resultate der Math. 15 (1989), 335–342. Zbl 0678.16027, MR 0997069, 10.1007/BF03322621
Reference: [15] W. K. Nicholson and A. Yaqub: A commutativity theorem for rings and groups.Canad. Math. Bull. 22 (1979), 419–423. MR 0563755, 10.4153/CMB-1979-055-9
Reference: [16] E. Psomopoulos: A commutativity theorem for rings.Math. Japon. 29 (1984), 371–373. Zbl 0548.16029, MR 0752233
Reference: [17] M. S. Puctha and A. Yaqub: Rings satisfying polynomial constraints.J. Math. Soc. Japan 25 (1973), 115–124. MR 0313312
Reference: [18] W.  Streb: Zur Struktur nichtkommutativer Ringe.Math. J.  Okayama Univ. 31 (1989), 135–140. Zbl 0702.16022, MR 1043356
Reference: [19] W. Streb: Über einen Satz von Herstein und Nakayama.Rend. Sem. Mat. Univ. Podova 64 (1981), 151–171. Zbl 0474.16024, MR 0636633
.

Files

Files Size Format View
CzechMathJ_52-2002-2_16.pdf 349.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo