Previous |  Up |  Next

Article

Title: Primary elements in Prüfer lattices (English)
Author: Jayaram, C.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 3
Year: 2002
Pages: 585-593
Summary lang: English
.
Category: math
.
Summary: In this paper we study primary elements in Prüfer lattices and characterize $\alpha $-lattices in terms of Prüfer lattices. Next we study weak ZPI-lattices and characterize almost principal element lattices and principal element lattices in terms of ZPI-lattices. (English)
Keyword: principal element
Keyword: primary element
Keyword: Prüfer lattice
MSC: 06F05
MSC: 06F10
MSC: 06F99
MSC: 13A15
idZBL: Zbl 1012.06017
idMR: MR1923264
.
Date available: 2009-09-24T10:54:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127746
.
Reference: [1] D. D.  Anderson: Abstract commutative ideal theory without chain condition.Algebra Universalis 6 (1976), 131–145. Zbl 0355.06022, MR 0419310, 10.1007/BF02485825
Reference: [2] D. D.  Anderson, J. Matijevic and W. Nichols: The Krull intersection theorem  II.Pacific J. Math. 66 (1976), 15–22. MR 0435062, 10.2140/pjm.1976.66.15
Reference: [3] D. D.  Anderson, C.  Jayaram and P. A.  Phiri: Bear lattices.Acta. Sci. Math. (Szeged) 59 (1994), 61–74. MR 1285430
Reference: [4] D. D.  Anderson and E. W. Johnson: Dilworth’s principal elements.Algebra Universalis 36 (1996), 392–404. MR 1408734, 10.1007/BF01236764
Reference: [5] D. D.  Anderson and C.  Jayaram: Principal element lattices.Czechoslovak Math.  J. 46(121) (1996), 99–109. MR 1371692
Reference: [6] H. S.  Butts and W.  Smith: Prüfer rings.Math. Z. 95 (1967), 196–211. MR 0209271
Reference: [7] R. P.  Dilworth: Abstract commutative ideal theory.Pacific J. Math. 12 (1962), 481–498. Zbl 0111.04104, MR 0143781, 10.2140/pjm.1962.12.481
Reference: [8] C.  Jayaram and E. W.  Johnson: Almost principal element lattices.Internat. J. Math. Math. Sci. 18 (1995), 535–538. MR 1331954, 10.1155/S0161171295000676
Reference: [9] C.  Jayaram and E. W.  Johnson: $s$-prime elements in multiplicative lattices.Period. Math. Hungar. 31 (1995), 201–208. MR 1610262, 10.1007/BF01882195
Reference: [10] C.  Jayaram and E. W.  Johnson: Some results on almost principal element lattices.Period. Math. Hungar. 31 (1995), 33–42. MR 1349291, 10.1007/BF01876351
Reference: [11] C.  Jayaram and E. W.  Johnson: Primary elements and prime power elements in multiplicative lattices.Tamkang J. Math. 27 (1996), 111–116. MR 1407005
Reference: [12] C.  Jayaram and E. W.  Johnson: Dedekind lattices.Acta. Sci. Math. (Szeged) 63 (1997), 367–378. MR 1480486
Reference: [13] C.  Jayaram and E. W.  Johnson: $\sigma $-elements in multiplicative lattices.Czechoslovak Math.  J. 48(123) (1998), 641–651. MR 1658225, 10.1023/A:1022475220032
Reference: [14] E. W.  Johnson and J. P. Lediaev: Representable distributive Noether lattices.Pacific J. Math. 28 (1969), 561–564. MR 0255456, 10.2140/pjm.1969.28.561
Reference: [15] P. J.  McCarthy: Arithmetical rings and multiplicative lattices.Ann. Math. Pura. Appl. 82 (1969), 267–274. Zbl 0216.05103, MR 0248124, 10.1007/BF02410800
.

Files

Files Size Format View
CzechMathJ_52-2002-3_13.pdf 316.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo