Title:
|
Topological characterizations of ordered groups with quasi-divisor theory (English) |
Author:
|
Močkoř, Jiří |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
52 |
Issue:
|
3 |
Year:
|
2002 |
Pages:
|
595-607 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For an order embedding $G\overset{h}{\rightarrow }{\rightarrow }\Gamma $ of a partly ordered group $G$ into an $l$-group $\Gamma $ a topology $\mathcal T_{\widehat{W}}$ is introduced on $\Gamma $ which is defined by a family of valuations $W$ on $G$. Some density properties of sets $h(G)$, $h(X_t)$ and $(h(X_t)\setminus \lbrace h(g_1),\dots ,h(g_n)\rbrace )$ ($X_t$ being $t$-ideals in $G$) in the topological space $(\Gamma ,\mathcal T_{\widehat{W}})$ are then investigated, each of them being equivalent to the statement that $h$ is a strong theory of quasi-divisors. (English) |
Keyword:
|
quasi-divisor theory |
Keyword:
|
ordered group |
Keyword:
|
valuations |
Keyword:
|
$t$-ideal |
MSC:
|
06F15 |
MSC:
|
06F20 |
MSC:
|
13F05 |
MSC:
|
20F60 |
idZBL:
|
Zbl 1019.06008 |
idMR:
|
MR1923265 |
. |
Date available:
|
2009-09-24T10:54:41Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127747 |
. |
Reference:
|
[1] I. Arnold: Ideale in kommutativen Halbgruppen.Rec. Math. Soc. Math. Moscow 36 (1929), 401–407. (German) |
Reference:
|
[2] M. Anderson and T. Feil: Lattice-ordered Groups.D. Reidl Publ. Co., Dordrecht, Tokyo, 1988. MR 0937703 |
Reference:
|
[3] K. E. Aubert: Divisors of finite character.Ann. Mat. Pura Appl. 33 (1983), 327–361. Zbl 0533.20034, MR 0725032 |
Reference:
|
[4] K. E. Aubert: Localizations dans les systémes d’idéaux.C. R. Acad. Sci. Paris 272 (1971), 465–468. MR 0277511 |
Reference:
|
[5] Z. I. Borevich and I. R. Shafarevich: Number Theory.Academic Press, New York, 1966. MR 0195803 |
Reference:
|
[6] P. Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011 |
Reference:
|
[7] L. G. Chouinard: Krull semigroups and divisor class group.Canad. J. Math. 33 (1981), 1459–1468. MR 0645239 |
Reference:
|
[8] A. Geroldinger and J. Močkoř: Quasi-divisor theories and generalizations of Krull domains.J. Pure Appl. Algebra 102 (1995), 289–311. MR 1354993, 10.1016/0022-4049(94)00088-Z |
Reference:
|
[9] R. Gilmer: Multiplicative Ideal Theory.M. Dekker, Inc., New York, 1972. Zbl 0248.13001, MR 0427289 |
Reference:
|
[10] M. Griffin: Rings of Krull type.J. Reine Angew. Math. 229 (1968), 1–27. Zbl 0173.03504, MR 0220726 |
Reference:
|
[11] M. Griffin: Some results on $v$-multiplication rings.Canad. J. Math. 19 (1967), 710-722. Zbl 0148.26701, MR 0215830 |
Reference:
|
[12] P. Jaffard: Les systémes d’idéaux.Dunod, Paris, 1960. Zbl 0101.27502, MR 0114810 |
Reference:
|
[13] J. Močkoř: Groups of Divisibility.D. Reidl Publ. Co., Dordrecht, 1983. MR 0720862 |
Reference:
|
[14] J. Močkoř and J. Alajbegovic: Approximation Theorems in Commutative Algebra.Kluwer Academic publ., Dordrecht, 1992. MR 1207134 |
Reference:
|
[15] J. Močkoř and A. Kontolatou: Groups with quasi-divisor theory.Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23–36. MR 1223185 |
Reference:
|
[16] J. Močkoř and A. Kontolatou: Divisor class groups of ordered subgroups.Acta Math. Inform. Univ. Ostraviensis 1 (1993), 37–46. MR 1250925 |
Reference:
|
[17] J. Močkoř and A. Kontolatou: Quasi-divisors theory of partly ordered groups.Grazer Math. Ber. 318 (1992), 81–98. MR 1227404 |
Reference:
|
[18] J. Močkoř: $t$-valuation and theory of quasi-divisors.J. Pure Appl. Algebra 120 (1997), 51–65. MR 1466097, 10.1016/S0022-4049(96)00059-X |
Reference:
|
[19] J. Močkoř and A. Kontolatou: Some remarks on Lorezen $r$-group of partly ordered group.Czechoslovak Math. J. 46(121) (1996), 537–552. MR 1408304 |
Reference:
|
[20] J. Močkoř: Divisor class group and the theory of quasi-divisors.To appear. MR 1765996 |
Reference:
|
[21] J. Ohm: Semi-valuations and groups of divisibility.Canad. J. Math. 21 (1969), 576-591. Zbl 0177.06501, MR 0242819 |
Reference:
|
[22] L. Skula: Divisorentheorie einer Halbgruppe.Math. Z. 114 (1970), 113–120. Zbl 0177.03202, MR 0262401 |
Reference:
|
[23] L. Skula: On $c$-semigroups.Acta Arith. 31 (1976), 247–257. Zbl 0303.13014, MR 0444817, 10.4064/aa-31-3-247-257 |
. |