Previous |  Up |  Next

Article

Title: Topological characterizations of ordered groups with quasi-divisor theory (English)
Author: Močkoř, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 3
Year: 2002
Pages: 595-607
Summary lang: English
.
Category: math
.
Summary: For an order embedding $G\overset{h}{\rightarrow }{\rightarrow }\Gamma $ of a partly ordered group $G$ into an $l$-group $\Gamma $ a topology $\mathcal T_{\widehat{W}}$ is introduced on $\Gamma $ which is defined by a family of valuations $W$ on $G$. Some density properties of sets $h(G)$, $h(X_t)$ and $(h(X_t)\setminus \lbrace h(g_1),\dots ,h(g_n)\rbrace )$ ($X_t$ being $t$-ideals in $G$) in the topological space $(\Gamma ,\mathcal T_{\widehat{W}})$ are then investigated, each of them being equivalent to the statement that $h$ is a strong theory of quasi-divisors. (English)
Keyword: quasi-divisor theory
Keyword: ordered group
Keyword: valuations
Keyword: $t$-ideal
MSC: 06F15
MSC: 06F20
MSC: 13F05
MSC: 20F60
idZBL: Zbl 1019.06008
idMR: MR1923265
.
Date available: 2009-09-24T10:54:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127747
.
Reference: [1] I. Arnold: Ideale in kommutativen Halbgruppen.Rec. Math. Soc. Math. Moscow 36 (1929), 401–407. (German)
Reference: [2] M. Anderson and T. Feil: Lattice-ordered Groups.D. Reidl Publ. Co., Dordrecht, Tokyo, 1988. MR 0937703
Reference: [3] K. E. Aubert: Divisors of finite character.Ann. Mat. Pura Appl. 33 (1983), 327–361. Zbl 0533.20034, MR 0725032
Reference: [4] K. E. Aubert: Localizations dans les systémes d’idéaux.C. R. Acad. Sci. Paris 272 (1971), 465–468. MR 0277511
Reference: [5] Z. I. Borevich and I. R. Shafarevich: Number Theory.Academic Press, New York, 1966. MR 0195803
Reference: [6] P. Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011
Reference: [7] L. G. Chouinard: Krull semigroups and divisor class group.Canad. J. Math. 33 (1981), 1459–1468. MR 0645239
Reference: [8] A. Geroldinger and J. Močkoř: Quasi-divisor theories and generalizations of Krull domains.J.  Pure Appl. Algebra 102 (1995), 289–311. MR 1354993, 10.1016/0022-4049(94)00088-Z
Reference: [9] R. Gilmer: Multiplicative Ideal Theory.M.  Dekker, Inc., New York, 1972. Zbl 0248.13001, MR 0427289
Reference: [10] M. Griffin: Rings of Krull type.J. Reine Angew. Math. 229 (1968), 1–27. Zbl 0173.03504, MR 0220726
Reference: [11] M. Griffin: Some results on $v$-multiplication rings.Canad. J. Math. 19 (1967), 710-722. Zbl 0148.26701, MR 0215830
Reference: [12] P. Jaffard: Les systémes d’idéaux.Dunod, Paris, 1960. Zbl 0101.27502, MR 0114810
Reference: [13] J. Močkoř: Groups of Divisibility.D. Reidl Publ.  Co., Dordrecht, 1983. MR 0720862
Reference: [14] J. Močkoř and J. Alajbegovic: Approximation Theorems in Commutative Algebra.Kluwer Academic publ., Dordrecht, 1992. MR 1207134
Reference: [15] J. Močkoř and A. Kontolatou: Groups with quasi-divisor theory.Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23–36. MR 1223185
Reference: [16] J. Močkoř and A. Kontolatou: Divisor class groups of ordered subgroups.Acta Math. Inform. Univ. Ostraviensis 1 (1993), 37–46. MR 1250925
Reference: [17] J. Močkoř and A. Kontolatou: Quasi-divisors theory of partly ordered groups.Grazer Math. Ber. 318 (1992), 81–98. MR 1227404
Reference: [18] J. Močkoř: $t$-valuation and theory of quasi-divisors.J. Pure Appl. Algebra 120 (1997), 51–65. MR 1466097, 10.1016/S0022-4049(96)00059-X
Reference: [19] J. Močkoř and A.  Kontolatou: Some remarks on Lorezen $r$-group of partly ordered group.Czechoslovak Math.  J. 46(121) (1996), 537–552. MR 1408304
Reference: [20] J. Močkoř: Divisor class group and the theory of quasi-divisors.To appear. MR 1765996
Reference: [21] J. Ohm: Semi-valuations and groups of divisibility.Canad. J. Math. 21 (1969), 576-591. Zbl 0177.06501, MR 0242819
Reference: [22] L. Skula: Divisorentheorie einer Halbgruppe.Math.  Z. 114 (1970), 113–120. Zbl 0177.03202, MR 0262401
Reference: [23] L. Skula: On $c$-semigroups.Acta Arith. 31 (1976), 247–257. Zbl 0303.13014, MR 0444817, 10.4064/aa-31-3-247-257
.

Files

Files Size Format View
CzechMathJ_52-2002-3_14.pdf 394.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo