Previous |  Up |  Next

Article

Title: On intervals and isometries of $MV$-algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 3
Year: 2002
Pages: 651-663
Summary lang: English
.
Category: math
.
Summary: Let Int $\mathcal A$ be the lattice of all intervals of an $MV$-algebra $\mathcal A$. In the present paper we investigate the relations between direct product decompositions of $\mathcal A$ and (i) the lattice Int $\mathcal A$, or (ii) 2-periodic isometries on $\mathcal A$, respectively. (English)
Keyword: $MV$-algebra
Keyword: duality
Keyword: interval
Keyword: autometrization
Keyword: 2-periodic isometry
MSC: 06D35
idZBL: Zbl 1012.06013
idMR: MR1923269
.
Date available: 2009-09-24T10:55:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127751
.
Reference: [1] G.  Birkhoff: Lattice Theory.AMS Colloquium Publications. Vol. XXV, Providence, RI, 1967. Zbl 0153.02501, MR 0227053
Reference: [2] G.  Cattaneo and F.  Lombardo: Independent axiomatization of $MV$-algebras.Tatra Mt. Math. Publ. 15 (1998), 227–232. MR 1655091
Reference: [3] C. C.  Chang: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [4] P.  Conrad: Lattice Ordered Groups.Tulane University, New Orleans, 1970. Zbl 0258.06011
Reference: [5] D.  Glushankof: Cyclic ordered groups and $MV$-algebras.Czechoslovak Math.  J. 44(119) (1994), 725–739.
Reference: [6] Ch.  Holland: Intrinsic metrics for lattice ordered groups.Algebra Universalis 19 (1984), 142–150. Zbl 0557.06011, MR 0758313, 10.1007/BF01190425
Reference: [7] J.  Jakubík: Isometries of lattice ordered groups.Czechoslovak Math.  J. 30(105) (1980), 142–152. MR 0565917
Reference: [8] J.  Jakubík: Direct product decompositions of $MV$-algebras.Czechoslovak Math.  J. 44(119) (1994), 725–739. MR 1295146
Reference: [9] J.  Jakubík and M.  Kolibiar: On some properties of pairs of lattices.Czechoslovak Math.  J. 4(79) (1954), 1–27. (Russian) MR 0065529
Reference: [10] M.  Jasem: Weak isometries and direct decompositions of dually residuated lattice ordered semigroups.Math. Slovaca 43 (1993), 119–136. Zbl 0782.06012, MR 1274597
Reference: [11] J.  Lihová: Posets having a selfdual interval poset.Czechoslovak Math.  J. 44(119) (1994), 523–533. MR 1288170
Reference: [12] P.  Mangani: On certain algebras related to many-valued logics.Boll. Un. Mat. Ital. 8 (1973), 68–78. (Italian)
Reference: [13] D.  Mundici: Interpretation of $AFC^*$-algebras in Łukasiewicz sentential calculus.J.  Funct. Anal. 65 (1986), 15–63. MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [14] W. B.  Powell: On isometries in abelian lattice ordered groups.J.  Indian Math. Soc. 46 (1982), 189–194. MR 0878072
Reference: [15] J.  Rachůnek: Isometries in ordered groups.Czechoslovak Math.  J. 34(109) (1984), 334–341. MR 0743498
Reference: [16] K. L.  Swamy: Isometries in autometrized lattice ordered groups.Algebra Universalis 8 (1977), 58–64. Zbl 0457.06015, MR 0463074
Reference: [17] K. L.  Swamy: Isometries in autometrized lattice ordered groups  II.Math. Seminar Notes, Kobe Univ. 5 (1977), 211–214. Zbl 0457.06015, MR 0463075
.

Files

Files Size Format View
CzechMathJ_52-2002-3_18.pdf 315.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo