Title:
|
On Cauchy problem for first order nonlinear functional differential equations of non-Volterra’s type (English) |
Author:
|
Bravyi, E. |
Author:
|
Hakl, R. |
Author:
|
Lomtatidze, A. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
52 |
Issue:
|
4 |
Year:
|
2002 |
Pages:
|
673-690 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
On the segment $I=[a,b]$ consider the problem \[ u^{\prime }(t)=f(u)(t) , \quad u(a)=c, \] where $f\:C(I,\mathbb{R})\rightarrow L(I,\mathbb{R})$ is a continuous, in general nonlinear operator satisfying Carathéodory condition, and $c\in \mathbb{R}$. The effective sufficient conditions guaranteeing the solvability and unique solvability of the considered problem are established. Examples verifying the optimality of obtained results are given, as well. (English) |
Keyword:
|
nonlinear functional differential equation |
Keyword:
|
initial value problem |
Keyword:
|
non–Volterra’s type operator |
MSC:
|
34K05 |
MSC:
|
34K10 |
MSC:
|
34K99 |
idZBL:
|
Zbl 1023.34054 |
idMR:
|
MR1940049 |
. |
Date available:
|
2009-09-24T10:55:28Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127754 |
. |
Reference:
|
[1] N. V. Azbelev, V. P. Maksimov and L. F. Rakhmatullina: Introduction to the Theory of Functional Differential Equations.Nauka, Moscow, 1991. (Russian) MR 1144998 |
Reference:
|
[2] S. R. Bernfeld and V. Lakshmikantham: An Introduction to Nonlinear Boundary Value Problems.Academic Press Inc., New York and London, 1974. MR 0445048 |
Reference:
|
[3] J. Blaz: Sur l’existence et l’unicité de la solution d’une equation differentielle á argument retardé.Ann. Polon. Math. 15 (1964), 9–14. Zbl 0129.07702, MR 0166459, 10.4064/ap-15-1-9-14 |
Reference:
|
[4] E. Bravyi, R. Hakl and A. Lomtatidze: Optimal conditions on unique solvability of the Cauchy problem for the first order linear functional differential equations.Czechoslovak Math. J 52(127) (2002), 513–530. MR 1923257, 10.1023/A:1021767411094 |
Reference:
|
[5] R. D. Driver: Existence theory for a delay-differential system.Contrib. Diff. Equations 1 (1963), 317–336. Zbl 0126.10102, MR 0150421 |
Reference:
|
[6] J. Hale: Theory of Functional Differential Equations.Springer-Verlag, New York-Heidelberg-Berlin, 1977. Zbl 0352.34001, MR 0508721 |
Reference:
|
[7] Sh. Gelashvili and I. Kiguradze: On multi-point boundary value problems for systems of functional differential and difference equations.Mem. Differential Equations Math. Phys. 5 (1995), 1–113. MR 1415806 |
Reference:
|
[8] I. Kiguradze and B. Půža: On boundary value problems for systems of linear functional differential equations.Czechoslovak Math. J. 47(122) (1997), 341–373. MR 1452425, 10.1023/A:1022829931363 |
Reference:
|
[9] I. Kiguradze and B. Půža: On boundary value problems for functional differential equations.Mem. Differential Equations Math. Phys. 12 (1997), 106–113. MR 1636865 |
Reference:
|
[10] I. Kiguradze and Z. Sokhadze: Concerning the uniqueness of solution of the Cauchy problem for functional differential equations.Differentsial’nye Uravneniya 31 (1995), 1977–1988. (Russian) MR 1431622 |
Reference:
|
[11] I. Kiguradze and Z. Sokhadze: Existence and continuability of solutions of the initial value problem for the system of singular functional differential equations.Mem. Differential Equations Math. Phys. 5 (1995), 127–130. |
Reference:
|
[12] I. Kiguradze and Z. Sokhadze: On the Cauchy problem for singular evolution functional differential equations.Differentsial’nye Uravneniya 33 (1997), 48–59. (Russian) MR 1607273 |
Reference:
|
[13] I. Kiguradze and Z. Sokhadze: On singular functional differential inequalities.Georgian Math. J. 4 (1997), 259–278. MR 1443538, 10.1023/A:1022901729928 |
Reference:
|
[14] I. Kiguradze and Z. Sokhadze: On global solvability of the Cauchy problem for singular functional differential equations.Georgian Math. J. 4 (1997), 355–372. MR 1457927, 10.1023/A:1022994513010 |
Reference:
|
[15] I. Kiguradze and Z. Sokhadze: On the structure of the set of solutions of the weighted Cauchy problem for evolution singular functional differential equations.Fasc. Math. (1998), 71–92. MR 1643553 |
Reference:
|
[16] V. Lakshmikantham: Lyapunov function and a basic inequality in delay-differential equations.Arch. Rational Mech. Anal. 10 (1962), 305–310. Zbl 0109.31203, MR 0144044, 10.1007/BF00281197 |
Reference:
|
[17] A. I. Logunov and Z. B. Tsalyuk: On the uniqueness of solution of Volterra type integral equations with retarded argument.Mat. Sb. 67 (1965), 303–309. (Russian) MR 0184048 |
Reference:
|
[18] W. L. Miranker: Existence, uniqueness and stability of solutions of systems of nonlinear difference-differential equations.J. Math. Mech. 11 (1962), 101–107. Zbl 0114.04201, MR 0140787 |
Reference:
|
[19] A. D. Myshkis: General theory of differential equations with retarded argument.Uspekhi Mat. Nauk 4 (1949), 99–141. (Russian) MR 0032913 |
Reference:
|
[20] A. D. Myshkis and L. E. Elsgolts: State and problems of theory of differential equations with deviated argument.Uspekhi Mat. Nauk 22 (1967), 21–57. (Russian) |
Reference:
|
[21] A. D. Myshkis and Z. B. Tsalyuk: On nonlocal continuability of solutions to differential equaitons with retarded argument.Differentsial’nye Uravneniya 5 (1969), 1128–1130. (Russian) MR 0248426 |
Reference:
|
[22] W. Rzymowski: Delay effects on the existence problems for differential equations in Banach space.J. Differential Equations 32 (1979), 91–100. Zbl 0423.34090, MR 0532765, 10.1016/0022-0396(79)90053-6 |
Reference:
|
[23] Š. Schwabik, M. Tvrdý and O. Vejvoda: Differential and Integral Equations: Boundary Value Problems and Adjoints.Academia, Praha, 1979. MR 0542283 |
Reference:
|
[24] Z. Sokhadze: On a theorem of Myshkis-Tsalyuk.Mem. Differential Equations Math. Phys. 5 (1995), 131–132. Zbl 0866.34053 |
. |