Previous |  Up |  Next

Article

Title: On Cauchy problem for first order nonlinear functional differential equations of non-Volterra’s type (English)
Author: Bravyi, E.
Author: Hakl, R.
Author: Lomtatidze, A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 4
Year: 2002
Pages: 673-690
Summary lang: English
.
Category: math
.
Summary: On the segment $I=[a,b]$ consider the problem \[ u^{\prime }(t)=f(u)(t) , \quad u(a)=c, \] where $f\:C(I,\mathbb{R})\rightarrow L(I,\mathbb{R})$ is a continuous, in general nonlinear operator satisfying Carathéodory condition, and $c\in \mathbb{R}$. The effective sufficient conditions guaranteeing the solvability and unique solvability of the considered problem are established. Examples verifying the optimality of obtained results are given, as well. (English)
Keyword: nonlinear functional differential equation
Keyword: initial value problem
Keyword: non–Volterra’s type operator
MSC: 34K05
MSC: 34K10
MSC: 34K99
idZBL: Zbl 1023.34054
idMR: MR1940049
.
Date available: 2009-09-24T10:55:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127754
.
Reference: [1] N. V. Azbelev, V. P. Maksimov and L. F.  Rakhmatullina: Introduction to the Theory of Functional Differential Equations.Nauka, Moscow, 1991. (Russian) MR 1144998
Reference: [2] S. R.  Bernfeld and V.  Lakshmikantham: An Introduction to Nonlinear Boundary Value Problems.Academic Press Inc., New York and London, 1974. MR 0445048
Reference: [3] J.  Blaz: Sur l’existence et l’unicité de la solution d’une equation differentielle á argument retardé.Ann. Polon. Math. 15 (1964), 9–14. Zbl 0129.07702, MR 0166459, 10.4064/ap-15-1-9-14
Reference: [4] E.  Bravyi, R.  Hakl and A.  Lomtatidze: Optimal conditions on unique solvability of the Cauchy problem for the first order linear functional differential equations.Czechoslovak Math. J 52(127) (2002), 513–530. MR 1923257, 10.1023/A:1021767411094
Reference: [5] R. D.  Driver: Existence theory for a delay-differential system.Contrib. Diff. Equations 1 (1963), 317–336. Zbl 0126.10102, MR 0150421
Reference: [6] J.  Hale: Theory of Functional Differential Equations.Springer-Verlag, New York-Heidelberg-Berlin, 1977. Zbl 0352.34001, MR 0508721
Reference: [7] Sh.  Gelashvili and I.  Kiguradze: On multi-point boundary value problems for systems of functional differential and difference equations.Mem. Differential Equations Math. Phys. 5 (1995), 1–113. MR 1415806
Reference: [8] I.  Kiguradze and B.  Půža: On boundary value problems for systems of linear functional differential equations.Czechoslovak Math. J. 47(122) (1997), 341–373. MR 1452425, 10.1023/A:1022829931363
Reference: [9] I.  Kiguradze and B.  Půža: On boundary value problems for functional differential equations.Mem. Differential Equations Math. Phys. 12 (1997), 106–113. MR 1636865
Reference: [10] I.  Kiguradze and Z.  Sokhadze: Concerning the uniqueness of solution of the Cauchy problem for functional differential equations.Differentsial’nye Uravneniya 31 (1995), 1977–1988. (Russian) MR 1431622
Reference: [11] I.  Kiguradze and Z.  Sokhadze: Existence and continuability of solutions of the initial value problem for the system of singular functional differential equations.Mem. Differential Equations Math. Phys. 5 (1995), 127–130.
Reference: [12] I.  Kiguradze and Z.  Sokhadze: On the Cauchy problem for singular evolution functional differential equations.Differentsial’nye Uravneniya 33 (1997), 48–59. (Russian) MR 1607273
Reference: [13] I.  Kiguradze and Z.  Sokhadze: On singular functional differential inequalities.Georgian Math. J. 4 (1997), 259–278. MR 1443538, 10.1023/A:1022901729928
Reference: [14] I.  Kiguradze and Z.  Sokhadze: On global solvability of the Cauchy problem for singular functional differential equations.Georgian Math. J. 4 (1997), 355–372. MR 1457927, 10.1023/A:1022994513010
Reference: [15] I.  Kiguradze and Z.  Sokhadze: On the structure of the set of solutions of the weighted Cauchy problem for evolution singular functional differential equations.Fasc. Math. (1998), 71–92. MR 1643553
Reference: [16] V.  Lakshmikantham: Lyapunov function and a basic inequality in delay-differential equations.Arch. Rational Mech. Anal. 10 (1962), 305–310. Zbl 0109.31203, MR 0144044, 10.1007/BF00281197
Reference: [17] A. I.  Logunov and Z. B.  Tsalyuk: On the uniqueness of solution of Volterra type integral equations with retarded argument.Mat. Sb. 67 (1965), 303–309. (Russian) MR 0184048
Reference: [18] W. L.  Miranker: Existence, uniqueness and stability of solutions of systems of nonlinear difference-differential equations.J. Math. Mech. 11 (1962), 101–107. Zbl 0114.04201, MR 0140787
Reference: [19] A. D.  Myshkis: General theory of differential equations with retarded argument.Uspekhi Mat. Nauk 4 (1949), 99–141. (Russian) MR 0032913
Reference: [20] A. D.  Myshkis and L. E.  Elsgolts: State and problems of theory of differential equations with deviated argument.Uspekhi Mat. Nauk 22 (1967), 21–57. (Russian)
Reference: [21] A. D.  Myshkis and Z. B.  Tsalyuk: On nonlocal continuability of solutions to differential equaitons with retarded argument.Differentsial’nye Uravneniya 5 (1969), 1128–1130. (Russian) MR 0248426
Reference: [22] W. Rzymowski: Delay effects on the existence problems for differential equations in Banach space.J.  Differential Equations 32 (1979), 91–100. Zbl 0423.34090, MR 0532765, 10.1016/0022-0396(79)90053-6
Reference: [23] Š.  Schwabik, M.  Tvrdý and O.  Vejvoda: Differential and Integral Equations: Boundary Value Problems and Adjoints.Academia, Praha, 1979. MR 0542283
Reference: [24] Z.  Sokhadze: On a theorem of Myshkis-Tsalyuk.Mem. Differential Equations Math. Phys. 5 (1995), 131–132. Zbl 0866.34053
.

Files

Files Size Format View
CzechMathJ_52-2002-4_1.pdf 373.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo