Previous |  Up |  Next

Article

Title: A simple proof of the Borel extension theorem and weak compactness of operators (English)
Author: Dobrakov, I.
Author: Panchapagesan, T. V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 4
Year: 2002
Pages: 691-703
Summary lang: English
.
Category: math
.
Summary: Let $T$ be a locally compact Hausdorff space and let $C_0(T)$ be the Banach space of all complex valued continuous functions vanishing at infinity in $T$, provided with the supremum norm. Let $X$ be a quasicomplete locally convex Hausdorff space. A simple proof of the theorem on regular Borel extension of $X$-valued $\sigma $-additive Baire measures on $T$ is given, which is more natural and direct than the existing ones. Using this result the integral representation and weak compactness of a continuous linear map $u\: C_0(T) \rightarrow X$ when $c_0 \lnot \subset X$ are obtained. The proof of the latter result is independent of the use of powerful results such as Theorem 6 of [6] or Theorem 3 (vii) of [13]. (English)
Keyword: weakly compact operator on $C_0(T)$
Keyword: representing measure
Keyword: lcHs-valued $\sigma $-additive Baire (or regular Borel
Keyword: or regular $\sigma $-Borel) measures
MSC: 28B05
MSC: 28C05
MSC: 28C15
MSC: 47B07
idZBL: Zbl 1023.28005
idMR: MR1940050
.
Date available: 2009-09-24T10:55:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127755
.
Reference: [1] S. K. Berberian: Measure and Integration.Chelsea, New York, 1965. Zbl 0126.08001, MR 0183839
Reference: [2] J. Diestel and J. J.  Uhl: Vector measures.In Survey, No. 15, Amer. Math. Soc., Providence, 1977. MR 0453964
Reference: [3] N.  Dinculeanu and I.  Kluvánek: On vector measures.Proc. London Math. Soc. 17 (1967), 505–512. MR 0214722
Reference: [4] N. Dunford and J. T.  Schwartz: Linear Operators, General Theory. Part I.Interscience, New York, 1958.
Reference: [5] R. E.  Edwards: Functional Analysis, Theory and Applications.Holt, Rinehart and Winston, New York, 1965. Zbl 0182.16101, MR 0221256
Reference: [6] A. Grothendieck: Sur les applications linéares faiblement compactes d’espaces du type  $C(K)$.Canad. J.  Math. 5 (1953), 129–173. MR 0058866, 10.4153/CJM-1953-017-4
Reference: [7] P. R.  Halmos: Measure Theory.Van Nostrand, New York, 1950. Zbl 0040.16802, MR 0033869
Reference: [8] I.  Kluvánek: Characterizations of Fourier-Stieltjes transform of vector and operator valued measures.Czechoslovak Math.  J. 17(92) (1967), 261–277. MR 0230872
Reference: [9] C. W.  McArthur: On a theorem of Orlicz and Pettis.Pacific J. Math. 22 (1967), 297–302. Zbl 0161.33104, MR 0213848
Reference: [10] T. V.  Panchapagesan: On complex Radon measures I.Czechoslovak Math.  J. 42(117) (1992), 599–612. Zbl 0795.28009, MR 1182191
Reference: [11] T. V.  Panchapagesan: On complex Radon measures II.Czechoslovak Math. J. 43(118) (1993), 65–82. Zbl 0804.28007, MR 1205231
Reference: [12] T. V.  Panchapagesan: Applications of a theorem of Grothendieck to vector measures.J.  Math. Anal. Appl. 214 (1997), 89–101. MR 1645515, 10.1006/jmaa.1997.5589
Reference: [13] T. V.  Panchapagesan: Characterizations of weakly compact operators on $C_0(T)$.Trans. Amer. Math. Soc. 350 (1998), 4849–4867. Zbl 0906.47021, MR 1615942, 10.1090/S0002-9947-98-02358-7
Reference: [14] A.  Pelczyński: Projections in certain Banach spaces.Studia Math. 19 (1960), 209–228. MR 0126145, 10.4064/sm-19-2-209-228
Reference: [15] W.  Rudin: Functional Analysis.McGraw-Hill, New York, 1973. Zbl 0253.46001, MR 0365062
Reference: [16] M.  Sion: Outer measures with values in topological groups.Proc. London Math. Soc. 19 (1969), 89–106. MR 0239039
Reference: [17] E.  Thomas: L’integration par rapport a une mesure de Radon vectorielle.Ann. Inst. Fourier (Grenoble) 20 (1970), 55–191. Zbl 0195.06101, MR 0463396, 10.5802/aif.352
Reference: [18] Ju. B. Tumarkin: On locally convex spaces with basis.Dokl. Akad. Nauk. SSSR 11 (1970), 1672–1675. Zbl 0216.40701, MR 0271694
Reference: [19] H.  Weber: Fortsetzung von Massen mit Werten in uniformen Halbgruppen.Arch. Math. XXVII (1976), 412–423. Zbl 0331.28005, MR 0425070, 10.1007/BF01224694
.

Files

Files Size Format View
CzechMathJ_52-2002-4_2.pdf 380.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo