Title:
|
A simple proof of the Borel extension theorem and weak compactness of operators (English) |
Author:
|
Dobrakov, I. |
Author:
|
Panchapagesan, T. V. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
52 |
Issue:
|
4 |
Year:
|
2002 |
Pages:
|
691-703 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $T$ be a locally compact Hausdorff space and let $C_0(T)$ be the Banach space of all complex valued continuous functions vanishing at infinity in $T$, provided with the supremum norm. Let $X$ be a quasicomplete locally convex Hausdorff space. A simple proof of the theorem on regular Borel extension of $X$-valued $\sigma $-additive Baire measures on $T$ is given, which is more natural and direct than the existing ones. Using this result the integral representation and weak compactness of a continuous linear map $u\: C_0(T) \rightarrow X$ when $c_0 \lnot \subset X$ are obtained. The proof of the latter result is independent of the use of powerful results such as Theorem 6 of [6] or Theorem 3 (vii) of [13]. (English) |
Keyword:
|
weakly compact operator on $C_0(T)$ |
Keyword:
|
representing measure |
Keyword:
|
lcHs-valued $\sigma $-additive Baire (or regular Borel |
Keyword:
|
or regular $\sigma $-Borel) measures |
MSC:
|
28B05 |
MSC:
|
28C05 |
MSC:
|
28C15 |
MSC:
|
47B07 |
idZBL:
|
Zbl 1023.28005 |
idMR:
|
MR1940050 |
. |
Date available:
|
2009-09-24T10:55:35Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127755 |
. |
Reference:
|
[1] S. K. Berberian: Measure and Integration.Chelsea, New York, 1965. Zbl 0126.08001, MR 0183839 |
Reference:
|
[2] J. Diestel and J. J. Uhl: Vector measures.In Survey, No. 15, Amer. Math. Soc., Providence, 1977. MR 0453964 |
Reference:
|
[3] N. Dinculeanu and I. Kluvánek: On vector measures.Proc. London Math. Soc. 17 (1967), 505–512. MR 0214722 |
Reference:
|
[4] N. Dunford and J. T. Schwartz: Linear Operators, General Theory. Part I.Interscience, New York, 1958. |
Reference:
|
[5] R. E. Edwards: Functional Analysis, Theory and Applications.Holt, Rinehart and Winston, New York, 1965. Zbl 0182.16101, MR 0221256 |
Reference:
|
[6] A. Grothendieck: Sur les applications linéares faiblement compactes d’espaces du type $C(K)$.Canad. J. Math. 5 (1953), 129–173. MR 0058866, 10.4153/CJM-1953-017-4 |
Reference:
|
[7] P. R. Halmos: Measure Theory.Van Nostrand, New York, 1950. Zbl 0040.16802, MR 0033869 |
Reference:
|
[8] I. Kluvánek: Characterizations of Fourier-Stieltjes transform of vector and operator valued measures.Czechoslovak Math. J. 17(92) (1967), 261–277. MR 0230872 |
Reference:
|
[9] C. W. McArthur: On a theorem of Orlicz and Pettis.Pacific J. Math. 22 (1967), 297–302. Zbl 0161.33104, MR 0213848 |
Reference:
|
[10] T. V. Panchapagesan: On complex Radon measures I.Czechoslovak Math. J. 42(117) (1992), 599–612. Zbl 0795.28009, MR 1182191 |
Reference:
|
[11] T. V. Panchapagesan: On complex Radon measures II.Czechoslovak Math. J. 43(118) (1993), 65–82. Zbl 0804.28007, MR 1205231 |
Reference:
|
[12] T. V. Panchapagesan: Applications of a theorem of Grothendieck to vector measures.J. Math. Anal. Appl. 214 (1997), 89–101. MR 1645515, 10.1006/jmaa.1997.5589 |
Reference:
|
[13] T. V. Panchapagesan: Characterizations of weakly compact operators on $C_0(T)$.Trans. Amer. Math. Soc. 350 (1998), 4849–4867. Zbl 0906.47021, MR 1615942, 10.1090/S0002-9947-98-02358-7 |
Reference:
|
[14] A. Pelczyński: Projections in certain Banach spaces.Studia Math. 19 (1960), 209–228. MR 0126145, 10.4064/sm-19-2-209-228 |
Reference:
|
[15] W. Rudin: Functional Analysis.McGraw-Hill, New York, 1973. Zbl 0253.46001, MR 0365062 |
Reference:
|
[16] M. Sion: Outer measures with values in topological groups.Proc. London Math. Soc. 19 (1969), 89–106. MR 0239039 |
Reference:
|
[17] E. Thomas: L’integration par rapport a une mesure de Radon vectorielle.Ann. Inst. Fourier (Grenoble) 20 (1970), 55–191. Zbl 0195.06101, MR 0463396, 10.5802/aif.352 |
Reference:
|
[18] Ju. B. Tumarkin: On locally convex spaces with basis.Dokl. Akad. Nauk. SSSR 11 (1970), 1672–1675. Zbl 0216.40701, MR 0271694 |
Reference:
|
[19] H. Weber: Fortsetzung von Massen mit Werten in uniformen Halbgruppen.Arch. Math. XXVII (1976), 412–423. Zbl 0331.28005, MR 0425070, 10.1007/BF01224694 |
. |