Previous |  Up |  Next

Article

Title: Oscillation and nonoscillation of higher order self-adjoint differential equations (English)
Author: Došlý, Ondřej
Author: Osička, Jan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 4
Year: 2002
Pages: 833-849
Summary lang: English
.
Category: math
.
Summary: Oscillation and nonoscillation criteria for the higher order self-adjoint differential equation \[ (-1)^n(t^{\alpha }y^{(n)})^{(n)}+q(t)y=0 \qquad \mathrm{(*)}\] are established. In these criteria, equation $(*)$ is viewed as a perturbation of the conditionally oscillatory equation \[ (-1)^n(t^{\alpha }y^{(n)})^{(n)}- \frac{\mu _{n,\alpha }}{t^{2n-\alpha }}y=0, \] where $\mu _{n,\alpha }$ is the critical constant in conditional oscillation. Some open problems in the theory of conditionally oscillatory, even order, self-adjoint equations are also discussed. (English)
Keyword: self-adjoint differential equation
Keyword: oscillation and nonoscillation criteria
Keyword: variational method
Keyword: conditional oscillation
MSC: 34B05
MSC: 34C10
idZBL: Zbl 1023.34028
idMR: MR1940063
.
Date available: 2009-09-24T10:57:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127768
.
Reference: [1] C. D. Ahlbrandt, D. B. Hinton and R. T. Lewis: Necessary and sufficient conditions for the discreteness of the spectrum of certain singular differential operators.Canad. J.  Math. 33 (1981), 229–246. MR 0608867, 10.4153/CJM-1981-019-1
Reference: [2] C. D.  Ahlbrandt, D. B.  Hinton and R. T.  Lewis: The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory.J.  Math. Anal. Appl. 81 (1981), 234–277. MR 0618771, 10.1016/0022-247X(81)90060-3
Reference: [3] W. A. Coppel: Disconjugacy. Lectures Notes in Mathematics, No. 220.Springer Verlag, Berlin-Heidelberg, 1971. MR 0460785
Reference: [4] O.  Došlý: Oscillation criteria and the discreteness of the spectrum of self-adjoint, even order, differential operators.Proc. Roy. Soc. Edinburgh 119 A (1991), 219–232. MR 1135970
Reference: [5] O.  Došlý: Conditionally oscillatory equations and spectral properties of singular differential operators.In: Proc. Conf. Ordinary Diff. Equations, Poprad 1994, pp. 23–31.
Reference: [6] O. Došlý: Oscillation criteria for self-adjoint linear differential equations.Math. Nachr. 166 (1994), 141–153. 10.1002/mana.19941660112
Reference: [7] O. Došlý: Nehari-type oscillation criteria for self-adjoint linear differential equations.J. Math. Anal. Appl. 182 (1994), 69–89. MR 1265883, 10.1006/jmaa.1994.1067
Reference: [8] O. Došlý: Oscillation and spectral properties of a class of singular self-adjoint differential operators.Math. Nach. 188 (1997), 49–68. MR 1484668, 10.1002/mana.19971880105
Reference: [9] O. Došlý: Oscillation and spectral properties of self-adjoint differential operators.Nonlinear Anal. 30 (1997), 1375–1384. MR 1490060, 10.1016/S0362-546X(97)00197-1
Reference: [10] O. Došlý and F. Fiedler: A remark on Nehari-type criteria for self-adjoint differential equations.Comment. Math. Univ. Carolin. 32 (1991), 447–462. MR 1159793
Reference: [11] O. Došlý and J. Komenda: Principal solutions and conjugacy criteria for self-adjoint differential equations.Arch. Math. 31 (1995), 217–238. MR 1368260
Reference: [12] O. Došlý and J. Osička: Kneser-type oscillation criteria for self-adjoint, two term, differential equations.Georgian J. Math. 2 (1995), 241–258. MR 1334880
Reference: [13] F. Fiedler: Oscillation criteria for a class of $2n$-order ordinary differential operators.J. Differential Equations 42 (1982), 155–185. MR 0641646
Reference: [14] F. Fiedler: Oscillation criteria for a special class of $2n$-order ordinary differential equations.Math. Nachr. 131 (1987), 205–218. Zbl 0644.34024, MR 0908812, 10.1002/mana.19871310119
Reference: [15] I. M.  Glazman: Direct Methods of Qualitative Analysis of Singular Differential Operators.Davey, Jerusalem, 1965.
Reference: [16] D. B. Hinton and R. T. Lewis: Discrete spectra criteria for singular differential operators with middle terms.Math. Proc. Cambridge Philos. Soc. 77 (1975), 337–347. MR 0367358, 10.1017/S0305004100051161
Reference: [17] D. B.  Hinton and R. T.  Lewis: Singular differential operators with spectra discrete and bounded below.Proc. Roy. Soc. Edinburgh 84A (1979), 117–134. MR 0549875
Reference: [18] W. Kratz: Quadratic Functionals in Variational Analysis and Control Theory.Akademie Verlag, Berlin, 1995. Zbl 0842.49001, MR 1334092
Reference: [19] W. T. Reid: Sturmian Theory for Ordinary Differential Equations.Springer Verlag, New York-Heidelberg-Berlin, 1980. Zbl 0459.34001, MR 0606199
.

Files

Files Size Format View
CzechMathJ_52-2002-4_15.pdf 387.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo