Title:
|
Bernstein-type operators on the half line (English) |
Author:
|
Attalienti, Antonio |
Author:
|
Campiti, Michele |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
52 |
Issue:
|
4 |
Year:
|
2002 |
Pages:
|
851-860 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We define Bernstein-type operators on the half line $\mathopen [0,+\infty \mathclose [$ by means of two sequences of strictly positive real numbers. After studying their approximation properties, we also establish a Voronovskaja-type result with respect to a suitable weighted norm. (English) |
Keyword:
|
Bernstein-Chlodovsky operators |
Keyword:
|
approximation process |
Keyword:
|
Voronovskaja-type formula |
MSC:
|
41A10 |
MSC:
|
41A35 |
MSC:
|
41A36 |
idZBL:
|
Zbl 1015.41014 |
idMR:
|
MR1940064 |
. |
Date available:
|
2009-09-24T10:57:26Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127769 |
. |
Reference:
|
[1] F. Altomare and M. Campiti: Korovkin-type Approximation Theory and its Applications.Vol.17, de Gruyter Series Studies in Mathematics, de Gruyter, Berlin-New York, 1994. MR 1292247 |
Reference:
|
[2] F. Altomare and E. M. Mangino: On a generalization of Baskakov operators.Rev. Roumaine Math. Pures Appl. 44 (1999), 683–705. MR 1839672 |
Reference:
|
[3] F. Altomare and E. M. Mangino: On a class of elliptic-parabolic equations on unbounded intervals.Positivity 5 (2001), 239–257. MR 1836748, 10.1023/A:1011450903149 |
Reference:
|
[4] I. Chlodovsky: Sur le développement des fonctions définies dans un interval infini en séries de polynômes de M. S. Bernstein.Compositio Math. 4 (1937), 380–393. MR 1556982 |
Reference:
|
[5] Ph. Clément and C. A. Timmermans: On $C_0$-semigroups generated by differential operators satisfying Ventcel’s boundary conditions.Indag. Math. 89 (1986), 379–387. MR 0869754, 10.1016/1385-7258(86)90023-5 |
Reference:
|
[6] B. Eisenberg: Another look at the Korovkin theorems.J. Approx. Theory 17 (1976), 359–365. Zbl 0335.41012, MR 0417644, 10.1016/0021-9045(76)90080-0 |
Reference:
|
[7] S. M. Eisenberg: Korovkin’s theorems.Bull. Malaysian Math. Soc. 2 (1979), 13–29. MR 0545798 |
Reference:
|
[8] S. Eisenberg and B. Wood: Approximating unbounded functions by linear operators generated by moment sequences.Studia Math. 35 (1970), 299–304. MR 0271585, 10.4064/sm-35-3-299-304 |
Reference:
|
[9] A. D. Gadzhiev: The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin.Soviet. Math. Dokl. 15 (1974), 1433–1436. Zbl 0312.41013 |
Reference:
|
[10] A. D. Gadzhiev: Theorems of Korovkin type.Math. Notes 20 (1976), 995–998. 10.1007/BF01146928 |
Reference:
|
[11] J. J. Swetits and B. Wood: Unbounded functions and positive linear operators.J. Approx. Theory 34 (1982), 325–334. MR 0656633, 10.1016/0021-9045(82)90075-2 |
Reference:
|
[12] C. A. Timmermans: On $C_0$-semigroups in a space of bounded continuous functions in the case of entrance or natural boundary points.In: Approximation and Optimization. Lecture Notes in Math. 1354, J. A. Gómez Fernández et al. (eds.), Springer-Verlag, Berlin-New York, 1988, pp. 209–216. MR 0996675 |
Reference:
|
[13] H. F. Trotter: Approximation of semi-groups of operators.Pacific J. Math. 8 (1958), 887–919. Zbl 0099.10302, MR 0103420, 10.2140/pjm.1958.8.887 |
. |