Previous |  Up |  Next

Article

Title: Bernstein-type operators on the half line (English)
Author: Attalienti, Antonio
Author: Campiti, Michele
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 4
Year: 2002
Pages: 851-860
Summary lang: English
.
Category: math
.
Summary: We define Bernstein-type operators on the half line $\mathopen [0,+\infty \mathclose [$ by means of two sequences of strictly positive real numbers. After studying their approximation properties, we also establish a Voronovskaja-type result with respect to a suitable weighted norm. (English)
Keyword: Bernstein-Chlodovsky operators
Keyword: approximation process
Keyword: Voronovskaja-type formula
MSC: 41A10
MSC: 41A35
MSC: 41A36
idZBL: Zbl 1015.41014
idMR: MR1940064
.
Date available: 2009-09-24T10:57:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127769
.
Reference: [1] F.  Altomare and M.  Campiti: Korovkin-type Approximation Theory and its Applications.Vol.17, de Gruyter Series Studies in Mathematics, de Gruyter, Berlin-New York, 1994. MR 1292247
Reference: [2] F.  Altomare and E. M.  Mangino: On a generalization of Baskakov operators.Rev. Roumaine Math. Pures Appl. 44 (1999), 683–705. MR 1839672
Reference: [3] F.  Altomare and E. M.  Mangino: On a class of elliptic-parabolic equations on unbounded intervals.Positivity 5 (2001), 239–257. MR 1836748, 10.1023/A:1011450903149
Reference: [4] I. Chlodovsky: Sur le développement des fonctions définies dans un interval infini en séries de polynômes de M. S.  Bernstein.Compositio Math. 4 (1937), 380–393. MR 1556982
Reference: [5] Ph.  Clément and C. A.  Timmermans: On $C_0$-semigroups generated by differential operators satisfying Ventcel’s boundary conditions.Indag. Math. 89 (1986), 379–387. MR 0869754, 10.1016/1385-7258(86)90023-5
Reference: [6] B.  Eisenberg: Another look at the Korovkin theorems.J.  Approx. Theory 17 (1976), 359–365. Zbl 0335.41012, MR 0417644, 10.1016/0021-9045(76)90080-0
Reference: [7] S. M.  Eisenberg: Korovkin’s theorems.Bull. Malaysian Math. Soc. 2 (1979), 13–29. MR 0545798
Reference: [8] S.  Eisenberg and B.  Wood: Approximating unbounded functions by linear operators generated by moment sequences.Studia Math. 35 (1970), 299–304. MR 0271585, 10.4064/sm-35-3-299-304
Reference: [9] A. D.  Gadzhiev: The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P.  Korovkin.Soviet. Math. Dokl. 15 (1974), 1433–1436. Zbl 0312.41013
Reference: [10] A. D.  Gadzhiev: Theorems of Korovkin type.Math. Notes 20 (1976), 995–998. 10.1007/BF01146928
Reference: [11] J. J.  Swetits and B.  Wood: Unbounded functions and positive linear operators.J.  Approx. Theory 34 (1982), 325–334. MR 0656633, 10.1016/0021-9045(82)90075-2
Reference: [12] C. A.  Timmermans: On $C_0$-semigroups in a space of bounded continuous functions in the case of entrance or natural boundary points.In: Approximation and Optimization. Lecture Notes in Math.  1354, J. A. Gómez Fernández et al. (eds.), Springer-Verlag, Berlin-New York, 1988, pp. 209–216. MR 0996675
Reference: [13] H. F.  Trotter: Approximation of semi-groups of operators.Pacific J.  Math. 8 (1958), 887–919. Zbl 0099.10302, MR 0103420, 10.2140/pjm.1958.8.887
.

Files

Files Size Format View
CzechMathJ_52-2002-4_16.pdf 326.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo