Previous |  Up |  Next

Article

Title: Connections of higher order and product preserving functors (English)
Author: Gancarzewicz, Jacek
Author: Rahmani, Noureddine
Author: Salgado, Modesto
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 4
Year: 2002
Pages: 889-896
Summary lang: English
.
Category: math
.
Summary: In this paper we consider a product preserving functor $\mathcal F$ of order $r$ and a connection $\Gamma $ of order $r$ on a manifold $M$. We introduce horizontal lifts of tensor fields and linear connections from $M$ to $\mathcal F(M)$ with respect to $\Gamma $. Our definitions and results generalize the particular cases of the tangent bundle and the tangent bundle of higher order. (English)
Keyword: connections of higher order
Keyword: product preserving functors
Keyword: lifts of tensors and connections
MSC: 53C05
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1020.53012
idMR: MR1940068
.
Date available: 2009-09-24T10:58:04Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127773
.
Reference: [1] L.  Cordero, C. T. J. Dodson and N.  de León: Differential Geometry of Frame Bundles.Kluwer Acad. Publ., Dordrecht, 1988.
Reference: [2] J.  Gancarzewicz: Connections of order  $r$.Ann. Polon. Math. 34 (1977), 69–83. Zbl 0347.53008, MR 0440471, 10.4064/ap-34-1-69-83
Reference: [3] J.  Gancarzewicz, S. Mahi and N.  Rahmani: Horizontal lift of tensor fields of type $(1,1)$ from a manifold to its tangent bundle of higher order.Rend. Circ. Mat. Palermo Suppl. 14 (1987), 43–59. MR 0920845
Reference: [4] J.  Gancarzewicz, W.  Mikulski and Z. Pogoda: Lifts of tensor fields and linear connections to a product preserving functor.Nagoya Math.  J. 135 (1994), 1–41. MR 1295815, 10.1017/S0027763000004931
Reference: [5] J.  Gancarzewicz and M.  Salgado: Horizontal lifts of tensor fields to the tangent bundle of higher order.Rend. Circ. Mat. Palermo Suppl. 21 (1989), 151–178. MR 1009570
Reference: [6] J.  Gancarzewicz and M.  Salgado: Connections of higher order and product preserving functors.IMUJ Preprint no 1997/21, e.-publ. http://www/im.uj.edu.pl.
Reference: [7] I.  Kolář, P.  Michor and J. Slovák: Natural Operations in Differential Geometry.Springer-Verlag, Berlin, 1993. MR 1202431
Reference: [8] R.  Palais and C.-L.  Terng: Natural bundles have a finite order.Topology 16 (1977), 271–277. MR 0467787, 10.1016/0040-9383(77)90008-8
Reference: [9] K.  Yano and S.  Ishihara: Horizontal lifts from manifolds to its tangent bundle.J.  Math. Mech. 16 (1967), 1015–1030. MR 0210029
Reference: [10] K.  Yano and S.  Ishihara: Tangent and Cotangent Bundles: Differential Geometry.Marcel Dekker, New York, 1973. MR 0350650
.

Files

Files Size Format View
CzechMathJ_52-2002-4_20.pdf 342.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo