Previous |  Up |  Next

Article

Title: On orthogonally $\sigma$-complete lattice ordered groups (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 4
Year: 2002
Pages: 881-888
Summary lang: English
.
Category: math
.
Summary: In this paper we prove a theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete lattice ordered groups. (English)
Keyword: lattice ordered group
Keyword: orthogonal $\sigma $-completeness
Keyword: direct factor
MSC: 06F15
MSC: 20F60
idZBL: Zbl 1012.06019
idMR: MR1940067
.
Date available: 2009-09-24T10:57:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127772
.
Reference: [1] J.  Jakubík: Cardinal properties of lattice ordered groups.Fund. Math. 74 (1972), 85–98. MR 0302528, 10.4064/fm-74-2-85-98
Reference: [2] J.  Jakubík: Cantor-Bernstein theorem for lattice ordered groups.Czechoslovak Math.  J. 22(97) (1972), 159–175. MR 0297666
Reference: [3] J.  Jakubík: On complete lattice ordered groups with strong units.Czechoslovak Math.  J. 46(121) (1996), 221–230. MR 1388611
Reference: [4] J.  Jakubík: Cantor-Bernstein theorem for $MV$-algebras.Czechoslovak Math.  J. 49(124) (1999), 517–526. MR 1708370, 10.1023/A:1022467218309
Reference: [5] J.  Jakubík: Convex isomorphisms of archimedean lattice ordered groups.Mathware Soft Comput. 5 (1998), 49–56. MR 1632739
Reference: [6] R.  Sikorski: A generalization of theorem of Banach and Cantor-Bernstein.Coll. Mat. 1 (1948), 140–144. MR 0027264
Reference: [7] R.  Sikorski: Boolean algebras.Second edition, Springer Verlag, Berlin, 1964. Zbl 0123.01303, MR 0126393
Reference: [8] F.  Šik: To the theory of lattice ordered groups.Czechoslovak Math.  J. 6(81) (1956), 1–25. (Russian)
Reference: [9] A.  De  Simone, D.  Mundici and M.  Navara: A Cantor-Bernstein theorem for $\sigma $-complete $MV$-algebras.(Preprint).
Reference: [10] A.  Tarski: Cardinal Algebras.Oxford University Press, New York, London, 1949. Zbl 0041.34502, MR 0029954
.

Files

Files Size Format View
CzechMathJ_52-2002-4_19.pdf 293.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo