Title:
|
Continuous extendibility of solutions of the Neumann problem for the Laplace equation (English) |
Author:
|
Medková, Dagmar |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2003 |
Pages:
|
377-395 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A necessary and sufficient condition for the continuous extendibility of a solution of the Neumann problem for the Laplace equation is given. (English) |
Keyword:
|
Neumann problem |
Keyword:
|
Laplace equation |
Keyword:
|
continuous extendibility |
MSC:
|
31B10 |
MSC:
|
35B60 |
MSC:
|
35B65 |
MSC:
|
35J05 |
MSC:
|
35J25 |
idZBL:
|
Zbl 1075.35508 |
idMR:
|
MR1983459 |
. |
Date available:
|
2009-09-24T11:02:30Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127807 |
. |
Reference:
|
[1] T. S. Angell, R. E. Kleinman and J. Král: Layer potentials on boundaries with corners and edges.Čas. pěst. mat. 113 (1988), 387–402. MR 0981880 |
Reference:
|
[2] H. Bauer: Harmonische Räume und ihre Potentialtheorie.Springer Verlag, Berlin, 1966. Zbl 0142.38402, MR 0210916 |
Reference:
|
[3] N. Boboc, C. Constantinescu and A. Cornea: On the Dirichlet problem in the axiomatic theory of harmonic functions.Nagoya Math. J. 23 (1963), 73–96. MR 0162957 |
Reference:
|
[4] M. Brelot: Éléments de la théorie classique du potentiel.Centre de documentation universitaire, Paris, 1961. MR 0106366 |
Reference:
|
[5] Yu. D. Burago and V. G. Maz’ya: Potential theory and function theory for irregular regions.Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian) |
Reference:
|
[6] E. De Giorgi: Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazi ad $r$ dimensioni.Ricerche Mat. 4 (1955), 95–113. MR 0074499 |
Reference:
|
[7] E. B. Fabes, M. Jodeit and N. M. Riviére: Potential techniques for boundary value problems in $C^1$ domains.Acta Math. 141 (1978), 165–186. MR 0501367, 10.1007/BF02545747 |
Reference:
|
[8] N. V. Grachev and V. G. Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries.Vest. Leningrad. Univ. 19 (1986), 60–64. MR 0880678 |
Reference:
|
[9] N. V. Grachev and V. G. Maz’ya: Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden. |
Reference:
|
[10] N. V. Grachev and V. G. Maz’ya: Solvability of a Boundary Integral Equation on a Polyhedron.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden. |
Reference:
|
[11] N. V. Grachev and V. G. Maz’ya: Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points.Report LiTH-MAT-R-91-06. Linköping Univ., Sweden. |
Reference:
|
[12] H. Heuser: Funktionalanalysis.Teubner, Stuttgart, 1975. Zbl 0309.47001, MR 0482021 |
Reference:
|
[13] V. Kordula, V. Müller and V. Rakočević: On the semi-Browder spectrum.Studia Math. 123 (1997), 1–13. MR 1438302 |
Reference:
|
[14] J. Köhn and M. Sieveking: Zum Cauchyschen und Dirichletschen Problem.Math. Ann. 177 (1968), 133–142. MR 0227445, 10.1007/BF01350789 |
Reference:
|
[15] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823.Springer-Verlag, Berlin, 1980. MR 0590244 |
Reference:
|
[16] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511–547. MR 0209503, 10.2307/1994580 |
Reference:
|
[17] J. Král: Problème de Neumann faible avec condition frontière dans $L^1$.Séminaire de Théorie du Potentiel (Université Paris VI) No. 9, Lecture Notes in Mathematics Vol. 1393, Springer-Verlag, 1989, pp. 145–160. |
Reference:
|
[18] J. Král and W. L. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory.Appl. Math. 31 (1986), 293–308. MR 0854323 |
Reference:
|
[19] N. L. Landkof: Fundamentals of Modern Potential Theory.Izdat. Nauka, Moscow, 1966. (Russian) MR 0214795 |
Reference:
|
[20] D. Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary.Czechoslovak Math. J. 47(122) (1997), 651–679. MR 1479311, 10.1023/A:1022818618177 |
Reference:
|
[21] D. Medková: Solution of the Robin problem for the Laplace equation.Appl. Math. 43 (1998), 133–155. MR 1609158, 10.1023/A:1023267018214 |
Reference:
|
[22] D. Medková: Solution of the Neumann problem for the Laplace equation.Czechoslovak Math. J. 48(123) (1998), 768–784. MR 1658269, 10.1023/A:1022447908645 |
Reference:
|
[23] I. Netuka: Fredholm radius of a potential theoretic operator for convex sets.Čas. pěst. mat. 100 (1975), 374–383. Zbl 0314.31006, MR 0419794 |
Reference:
|
[24] I. Netuka: Generalized Robin problem in potential theory.Czechoslovak Math. J. 22(97) (1972), 312-324. Zbl 0241.31008, MR 0294673 |
Reference:
|
[25] I. Netuka: An operator connected with the third boundary value problem in potential theory.Czechoslovak Math. J. 22(97) (1972), 462–489. Zbl 0241.31009, MR 0316733 |
Reference:
|
[26] I. Netuka: The third boundary value problem in potential theory.Czechoslovak Math. J. 22(97) (1972), 554–580. Zbl 0242.31007, MR 0313528 |
Reference:
|
[27] I. Netuka: Continuity and maximum principle for potentials of signed measures.Czechoslovak Math. J. 25(100) (1975), 309–316. Zbl 0309.31019, MR 0382690 |
Reference:
|
[28] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method.Appl. Anal. 45 (1992), 1–4, 135–177. MR 1293594, 10.1080/00036819208840093 |
Reference:
|
[29] A. Rathsfeld: The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum.Appl. Anal. 56 (1995), 109–115. Zbl 0921.31004, MR 1378015, 10.1080/00036819508840313 |
Reference:
|
[30] Ch. G. Simader: The weak Dirichlet and Neumann problem for the Laplacian in $L^q$ for bounded and exterior domains. Applications.Nonlinear analysis, function spaces and applications, Vol. 4, Proc. Spring School, Roudnice nad Labem (Czech, 1990), Teubner-Texte Math. 119, 1990, pp. 180–223. MR 1151436 |
Reference:
|
[31] Ch. G. Simader and H. Sohr: The Dirichlet problem for the Laplacian in bounded and unbounded domains.Pitman Research Notes in Mathematics Series 360, Addison Wesley Longman Inc., 1996. MR 1454361 |
Reference:
|
[32] M. Schechter: Principles of Functional Analysis.Academic Press, 1973. MR 0445263 |
Reference:
|
[33] W. P. Ziemer: Weakly Differentiable Functions.Springer Verlag, 1989. Zbl 0692.46022, MR 1014685 |
. |