Previous |  Up |  Next

Article

Title: Positive periodic solutions of $N$-species neutral delay systems (English)
Author: Fang, Hui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 3
Year: 2003
Pages: 561-570
Summary lang: English
.
Category: math
.
Summary: In this paper, we employ some new techniques to study the existence of positive periodic solution of $n$-species neutral delay system \[ N^{\prime }_i(t)=N_i(t)\biggl [a_i(t)-\sum _{j=1}^n\beta _{ij}(t)N_j(t)- \sum _{j=1}^nb_{ij}(t)N_j(t-\tau _{ij}(t))-\sum _{j=1}^nc_{ij}(t) N^{\prime }_j(t-\tau _{ij}(t))\biggr ]. \] As a corollary, we answer an open problem proposed by Y. Kuang. (English)
Keyword: positive periodic solutions
Keyword: existence
Keyword: neutral delay system
MSC: 34A12
MSC: 34C25
MSC: 34K13
MSC: 34K15
MSC: 34K40
idZBL: Zbl 1080.34530
idMR: MR2000053
.
Date available: 2009-09-24T11:04:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127823
.
Reference: [1] Y.  Kuang: Delay Differential Equations with Applications in Population Dynamics.Academic Press, New York, 1993. Zbl 0777.34002, MR 1218880
Reference: [2] H. I. Freedman and J.  Wu: Periodic solutions of single-species models with periodic delay.SIAM J.  Math. Anal. 23 (1992), 689–701. MR 1158828, 10.1137/0523035
Reference: [3] L.  Erbe, W.  Krawcewicz and J.  Wu: A composite coincidence degree with applications to boundary value problems of neutral equations.Trans. Amer. Math. Soc. 335 (1993), 459–478. MR 1169080, 10.1090/S0002-9947-1993-1169080-3
Reference: [4] W. Krawcewicz and J.  Wu: Theory of Degrees with Applications to Bifurcations and Differential Equations.John Wiley & Sons, Inc., New York, 1996. MR 1426128
.

Files

Files Size Format View
CzechMathJ_53-2003-3_6.pdf 327.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo